
 ßÛÛÛÛÛÛ ÛÛÛÛÛß ßÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛ ßÛÛÛÛÛÛÛÛÛÜÜ
 ÛÛÛ ÛÛ ÛÛÛ ß ÛÛÛ ßÛÛÛÜ
 ÛÛÛ ÛÛ ÛÛÛ ÛÛÛ ÛÛÛ
 ÛÛÛ ÛÛ ÛÛÛ ÛÛÛ ÛÛÛ
 ÛÛÛ ÛÛ ÛÛÛ ÛÛÛ ÛÛÛ
 ÛÛÛÛÛ ÛÛÛ Ü ÛÛÛ ÛÛÛ
 ÛÛÛ ÛÛÛÛÛÛÛÛÛÛÛÛÛ ÛÛÛ ÛÛÛ
 ÛÛÛÛ ÛÛÛ ß ÛÛÛ ÛÛÛ
 ÛÛ ÛÛÛ ÛÛÛ ÛÛÛ ÛÛÛ
 ÛÛ ÛÛÛ ÛÛÛ ÛÛÛ ÛÛÛ
 ÛÛ ÛÛÛ ÛÛÛ ÛÛÛ ÛÛÛ
 ÛÛ ÛÛÛ ÛÛÛ ÛÛÛ ÛÛÛ
 ÛÛ ÛÛÛ ÛÛÛ Ü ÛÛÛ ÜÛÛÛß
 ÜÛÛÛÛÛÜ ÜÛÛÛÛÛÜ ÜÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛ ÜÛÛÛÛÛÛÛÛÛßß

 V E R S I O N 3 . 2

All rights to the XED software and its documentation are reserved by the
authors. Copyright 2016 Larry Fish, Richard Ottosen, and Loren Blaney.

This software and its documentation are provided as-is. There are no
warranties, expressed or implied.

 CONTENTS

 1.0 INTRODUCTION 2
 1.1 GETTING STARTED 2
 1.2 THE TEXT WINDOW 3
 1.3 THE RULER 3
 1.4 THE COMMAND LINE 3
 1.5 THE STATUS LINE 4

 2.0 DIRECT MODE VERSUS COMMAND MODE 5
 2.1 DIRECT MODE 5
 2.1.1 Control Characters in the Text 7
 2.1.2 Deleting and Undeleting 7
 2.1.3 Text Markers 7
 2.2 COMMAND MODE 7
 2.2.1 Executing Commands Multiple Times 10
 2.2.2 Editing Command Lines 10
 2.2.3 Function Keys 10

 3.0 SEARCHING . 10
 3.1 EXAMPLES 12

 4.0 MARGINS . 12

 5.0 THE SCOOP . 13
 5.1 LINE SCOOPS 14
 5.2 COLUMN SCOOPS 14

 6.0 EXTENDED ASCII CHARACTERS 16
 6.1 BOX CHARACTERS 16
 6.2 INSERT AND OVERWRITE MODES 17

 7.0 LINES . 17
 7.1 CARRIAGE RETURNS AND LINE FEEDS 17
 7.2 COUNTING LINES 18
 7.3 LONG LINES 18

 8.0 FILE HANDLING 18
 8.1 FILE MANIPULATION 19
 8.2 CHANGING TERMINALS 20

 9.0 ADVANCED MACROS 21
 9.1 COMMAND-LINE LOOPS 21
 9.2 EXPRESSIONS AND CONDITIONALS 22
 9.2.1 Expressions 22
 9.2.2 The Variable 23
 9.2.3 Conditionals 23
 9.2.4 Output Commands 24
 9.2.5 Looping 24
 9.2.6 Cursor Movement 25
 9.2.7 Examples 25
 9.2.8 Break Command 25

 1

 2

1.0 INTRODUCTION

XED is a screen-oriented text editor that runs on the Raspberry Pi under
Raspbian. It's designed for writing programs, but it's also useful for
writing any kind of text--like this manual for instance. XED doesn't have
fancy fonts or use a mouse, but instead concentrates on being fast and
efficient.

XED has features not found in other editors. It can handle files of any
size and lines of any length. It handles all ASCII characters including
control and IBM extended characters. It works with displays 80 characters
by 25 lines and larger. It has automatic wordwrap, and can reformat
paragraphs and center lines. It has a sophisticated macro capability that
lets you write small programs to do complex editing tasks. It does cut,
copy and paste--both line and column oriented. You can draw using box
characters. You can restore text that you accidentally delete. XED does
many kinds of searches: forward and backward, case sensitive and
insensitive, wildcard, search and replace, and search across multiple
buffers. It has place markers that let you jump back to a marked location
in the text or alternate between two marked locations. Program files can
be displayed with highlighted syntax.

Most commands can be executed with a single keystroke, such as Ctrl+A.
Common commands are done without moving your fingers from the home-row
key position. In fact, the most common commands are done with the left
hand, leaving the right hand free to shuffle papers or scribble notes.

1.1 GETTING STARTED

To run XED type this at the command prompt:

 xed <filename> <Enter>

<Filename> is the name of your file. It can include a path specification.
XED tries to open an input file with the name you specify, but if the
file doesn't exist, it creates a new file with this name.

You should see something like this:

 ÚÄÄÄ¿
 ³ ³
 ³ ³
 ³ ³
 ³ ³
 ³ ³ <- Text Window
 ³ ³
 ³ ³
 ³ ³
 ³ ³
 ³ ³
 ³|--/+---1---+---2---+---3---+---4---+---5---+---6^-|+³ <- Ruler
 ³ ³ <- Command Line
 ³ok Cmd:7 Scoop:98 S#s -> ins Rem:921 At:109 Col:9³ <- Status Line
 ÀÄÄÄÙ

 3

Text is entered by simply typing. If you make a mistake, correct it with
the Backspace key. Use the arrow keys to move anywhere in your text. New
typing is inserted by shifting existing characters out of the way.

There are many editing commands, and even the most experienced user has
trouble remembering them all. Shift+F1 displays the help screens.
<Esc>/<Esc><Esc> prints them out. This makes a handy reference when first
learning XED. [Printing is currently not implemented on the Raspberry Pi.]

There are two ways to exit from XED:

 <Esc>Q<Esc><Esc>
 <Esc>T<Esc><Esc>

The "Q" command is the normal way. This saves your text in the output
file. The "T" command exits without saving your text. All commands are
case-insensitive so "q" and "t" can also be used.

1.2 THE TEXT WINDOW

Most of the screen is devoted to text. Editing occurs at the cursor,
which is a red block. The cursor is usually near the bottom. As it's
moved up and down, the text scrolls down and up such that the cursor
stays at the same line on the screen.

1.3 THE RULER

The ruler helps orient you. The numbers measure the text columns, for
example, "2" indicates column 20. Other characters on the ruler indicate
the following:

 / Marks the column where the first line of a
 paragraph is indented.

 | Marks the columns for the left and right margins.
 These are often hidden beneath the other characters.

^ or diamond Mark the location of the bell column. If wordwrap
 is on, the diamond character is shown. Otherwise,
 the "^" character is shown.

smiley face Indicates the location of the cursor within the
 edit buffer. If this is near the left side, the
 cursor is near the beginning of the buffer. If
 this is near the right side, the cursor is near
 the end of the buffer.

The edit buffer is the available RAM space in your computer. Files larger
than this space are loaded a chunk at a time.

1.4 THE COMMAND LINE

The command line is used for macros. Macros are short programs that
perform editing tasks. There are 20 command lines. The currently
selected one is displayed.

 4

1.5 THE STATUS LINE

The status line displays information about the state of XED. There are
ten fields.

 ³ok Cmd:7 Scoop:98 S#s -> ins Rem:921 At:109 Col:9 Mod³
 ÀÄÄÙ
 ^ ^ ^ ^ ^ ^ ^ ^ ^ ^
 1 2 3 4 5 6 7 8 9 10

1) Error Field: Displays error information. If the last operation caused
an error, a message appears in this field. If there's no error then "ok"
is displayed.

2) Command Line Number: Displays the number of the selected command line
(0-19).

3) Scoop Free Space: Indicates the number of unused characters available
in the scoop. The scoop is a temporary holding place. It's used to scoop
up text and move it to another location. It's similar to what other
editors call a clipboard that's used for cut, copy, and paste operations.

4) Search Case: Indicates whether search commands are case sensitive. If
"S#s" is displayed, searches are case sensitive. If "S=s" is displayed,
upper and lower case characters are treated as the same.

5) Search Direction: Indicates the direction of searches. If a right
arrow appears, searches move forward from the cursor. If a left arrow
appears, searches move backward.

6) Insert/Overwrite Mode: Indicates whether typing is inserted by
shifting existing text out of the way or whether the existing text is
overwritten. XED is normally used in insert mode. When in insert mode,
"ins" appears. When in overwrite mode, a yellow "OVR" appears.

7) Remaining Free Space: Indicates the number of unused character spaces
left in the edit buffer.

8) Cursor Location: Shows the cursor location, in characters, from the
beginning of the edit buffer.

9) Column Count: Shows the cursor column position from the beginning of
the line. The column number takes into account the effect of any tab
characters. Note that the left-most column is column zero.

10) Modified: When "Mod" is displayed, this indicates that the text in
the edit buffer has been changed.

On wide screen displays the name of the file being edited is shown. If
the output file name is different than the input file name, it's also
shown.

 5

2.0 DIRECT MODE VERSUS COMMAND MODE

XED has two kinds of commands: those that operate directly on the text
(such as Ctrl+A) and those that are executed from the command line (such
as <Esc>Q<Esc><Esc>). XED always starts in direct mode. Typing <Esc>
changes from direct mode to command mode.

2.1 DIRECT MODE

Most of the commands used in direct mode are control characters. The most
commonly used commands are positioned close to the left side of the
keyboard so that the Ctrl key can be pressed with the little finger while
the commands are typed. [This assumes that the Ctrl key and Caps Lock key
have been swapped by changing the line in the file /etc/default/keyboard
from XKBOPTIONS="" to XKBOPTIONS="ctrl:swapcaps"] This way your fingers
never leave the home position. The following diagram shows the location
of the main cursor movement keys:

 Character Line Buffer

 ³ ³ ³
 ÚÄÄÄÄÄ¿ÚÄÄÄÄÄ¿ÚÄÄÄÄÄ¿
 ³ Q ³³ W ³³ E ³ ÄÄÄ Backward
 ÀÄÄÄÄÄÙÀÄÄÄÄÄÙÀÄÄÄÄÄÙ
 ÚÄÄÄÄÄÄ¿ÚÄÄÄÄÄ¿ÚÄÄÄÄÄ¿ÚÄÄÄÄÄ¿
 ³ Ctrl ³³ A ³³ S ³³ D ³ ÄÄÄ Forward
 ÀÄÄÄÄÄÄÙÀÄÄÄÄÄÙÀÄÄÄÄÄÙÀÄÄÄÄÄÙ

Note that the commands are arranged in pairs. One key moves the cursor
backward, while the other moves the cursor forward. As you see, the
cursor can be moved a character at a time, a line at a time, or to the
beginning or end of the edit buffer.

Years ago IBM moved the Caps Lock key to the Ctrl key position, which
changed the key arrangement shown above. You can move it back as
explained above.

In XED the line-movement commands are a little different than in most
other editors. In most editors the line-movement commands leave the
cursor on the same column, but in XED line-movement commands force the
cursor to the beginning of the line. This helps orient you as you scroll
through your text, but if you prefer that the cursor stays on the same
column then use the arrow keys instead.

 6

These commands are available in direct mode:

 -- DIRECT COMMANDS --
ÉÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÑÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍ»
º MOVE ³ ADDITIONAL CHARACTERS º
º ^A Ahead a character ³ ^I Tab º
º ^Q Back a character ³ ^L Form feed (new page) º
º ^N ~N Ahead to Next word ³ ^U Indent same as line above º
º ^B ~B Back a word ³ ^Z Shift case and move ahead º
º ^S Down a line ³ ^T Display control chars (on/off) º
º ^W Up a line ³ ^^ Always insert next keystroke º
º ^J Jump ahead a page (PgDn) ÃÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¶
º ^K Kick back a page (PgUp) ³ SCOOP º
º ^D Ahead to end of edit buffer ³ ^R Start (or Resume) a scoop-up º
º ^E Back to start of edit buffer ³ ^F Finish a scoop-up º
º ³ ^Y Insert scoop and empty it º
ÇÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÅÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¶
º DELETE ³ COMMAND LINE º
º Bksp Back a character (^H) ³ Esc Enter command-line mode º
º Del Ahead a character ³ ^G Re-execute command line (Go) º
º ^C ~C Back a word ³ ^V Copy command line into text º
º ^X Back a line ³ ^P Select command line (0-9) º
º ~X Ahead a line ³ ^] Change search case sensitivity º
º ³ ^_ Reverse search direction º
ÈÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÏÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍ¼
 ^ = Ctrl key ~ = Alt key Fn = Function key SFn = Shifted

 -- EXTENDED DIRECT COMMANDS --
 ÉÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÑÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍ»
 º F1 Get last command line ³ SF1 Display help summary º
 º F2 Get next command line ³ SF2 Display ASCII chart º
 º F3 Turn wordwrap mode on/off ³ SF3 Show status lines (off/on) º
 º F4 Get next buffer from file ³ SF4 Highlight syntax (on/off) º
 º F5 Insert scoop ³ SF5 Insert column scoop º
 º F6 Margin paragraph ³ º
 º F7 Display current line number ³ SF7 Scroll text (on/off) º
 º F8 Erase scoop ³ SF8 Select font size (S/M/L) º
 º F9 Mark location in text ³ º
 º F10 Move to last marker ³ º
 ÇÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÅÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¶
 º ³ ~R Start column scoop-up º
 º ³ ~F Finish column scoop & blank º
 º ³ ~Y Insert column scoop & empty º
 ÇÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÁÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¶
 º ^O ~O Undelete (Oops!) º
 º Insert Select insert or overwrite mode º
 º ~D Draw with box characters: Å Ø × Î º
 º ^Break Break out of a command-line loop º
 º º
 ÈÍÍÍ¼
 ^ = Ctrl key ~ = Alt key Fn = Function key SFn = Shifted

 7

2.1.1 Control Characters in the Text

When control characters are inserted into the text they are usually
highlighted. For example, Ctrl+L appears as a black-on-white "L". Some
control characters, like carriage return and tab, position the text and
don't appear as highlighted characters. Sometimes it's useful to see all
the control characters. Ctrl+T highlights all control characters, includ-
ing tabs and carriage returns. It also displays space characters as small
dots so you can easily count them and distinguish them from tabs.

Occasionally you need to insert a control character, such as the bell
(Ctrl+G), into your text. But typing most control characters executes a
command rather than inserts it. The Ctrl+^ (same as: Ctrl+Shift+6) is
used to solve this problem. Any keystroke that follows this command
is inserted into the text.

2.1.2 Deleting and Undeleting

The Backspace key is often used for correcting mistakes. It deletes one
character to the left of the cursor. The Delete key deletes the character
under the cursor, which has the effect of deleting one character ahead.
Ctrl+X deletes from the cursor back to the beginning of the line, or if
the cursor is at the beginning of the line, it deletes the line above.

XED can "undelete" text that's accidentally deleted. If you delete some
text using one of the delete commands (Ctrl+X, Delete, or Backspace),
typing Ctrl+O (oops) restores it. You must use Ctrl+O immediately after
deleting. If you move the cursor with anything other than a delete
command, the text is lost and you cannot undelete it. Multiple deletes,
even using different delete commands, can all be undeleted.

2.1.3 Text Markers

Text markers can be used to move back and forth between two locations.
This is ideal when you need to compare two areas of text.

You can put an invisible marker in the text at any time by hitting the F9
key. You can move to another location and place a second marker by typing
F9 again. Only two markers are active at one time. If you hit F9 a third
time, the oldest marker is moved to the current position.

If you hit F10, the cursor moves to either the most recently set marker,
or if you just moved to a marker, the cursor moves to the other marker.

2.2 COMMAND MODE

Command mode lets you write small programs that edit text. These programs
are called macros. Commands can be combined in many ways to perform
almost conceivable any editing task. Groups of characters can be searched
for, then deleted, and new characters inserted. The operation can be
repeated throughout the text. As stated before, the <Esc> key is used to
move from direct mode to command mode. It's also used to separate certain
commands on the command line. Typing two <Esc>s at the end of the command
line executes it. This is a little confusing, so we'll go through it step
by step.

 8

When in direct mode, typing <Esc> puts you into command mode. An inverse
video "[" and a red cursor appear on the command line indicating that you
are in command mode. Typing another <Esc> executes the empty command line
and puts you back into direct mode. Typing a third <Esc> takes you back
into command mode. As you see, <Esc> takes you back and forth between
direct mode and command mode.

In command mode, characters typed on the keyboard appear on the command
line. <Esc> is used to separate commands. After the commands are entered,
two <Esc>s are typed to execute them, and XED returns to direct mode. The
command line remains, and it can be re-executed from direct mode by
typing Ctrl+G. Reentering command mode clears the previous command line.
You can leave command mode, back to direct mode, at any time by typing a
Ctrl+X, since this deletes the command line. You also can leave command
mode by using the Backspace key to delete all the characters on the
command line.

XED has 20 command lines. You can select one and execute it at any time.
Typing Ctrl+G re-executes the currently selected command line.

The function keys F1 and F2 are used to select different command lines.
F1 decrements the command-line number and F2 increments it. In this way a
single keystroke can be used change and examine each command line.

The Ctrl+P command also can be used to select a new command line. When
you type Ctrl+P, a cursor appears on the status line over the
command-line number. Type the number (0-9) of the command line you want.

To facilitate the use of multiple command lines, XED cycles between them.
Hitting <Esc>, causes the command-line number to increment before the new
command line is entered. This prevents the old command line from being
overwritten. This forms the command lines into a circular buffer. Many
times, you want to save the last command line. This way, you have a
record of the last command lines (10-19) you've executed.

XED starts with automatic command-line cycling on. If you use the Ctrl+P
command to select a specific command line, automatic cycling is turned
off. Hitting the F1 or F2 keys to decrement or increment the command line
turns command-line cycling back on.

Any command that works in direct mode also works in command mode. For
example, Ctrl+A moves the cursor one character forward in both direct and
command mode. If you use Ctrl+^ to insert Ctrl+X into the command line,
it works like Ctrl+X in direct mode and deletes a line in the edit
buffer.

 9

There are commands available in command mode that cannot be done in
direct mode. These extra commands are shown here:

 -- COMMAND-LINE COMMANDS --
ÉÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÑÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍ»
º DELETE ³ QUIT º
º D Back a character ³ T Terminate and discard text º
º R Rest of line, including CR ³ Q Quit and save text º
º E Erase scoop ³ º
º Z Zap back to form feed (^L) ÃÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¶
º K Kill entire edit buffer ³ MISCELLANY º
ÇÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ´ / List help summary on printer º
º INSERT ³ L List edit buffer on printer º
º I String ³ M Set left, right margins or bell º
º X Scoop ³ Y Center line º
º H Character by its Hex value ³ V Copy text into command line º
º ³ J Re-execute command line (Jump) º
ÇÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ´ P Execute command line (0-9) º
º FILE ³ Esc Command separator º
º G Get next buffer from file ³ Esc Esc Execute command line º
º A Append from input file ³ { } Enclose a loop º
º W Write to output file ³ ; Exit a loop º
º O Open input and output files ³ # Repeat command indefinitely º
º C Close output file ³ º
º ³ º
ÈÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÏÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍ¼

 -- EXTENDED COMMAND-LINE COMMANDS --
ÉÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÑÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍ»
º EXPRESSION (sets variable) ³ THE VARIABLE º
º () Enclose an expression ³ BA Insert it as an ASCII character º
º [] Execute if variable is not 0 ³ BH Insert it as a Hex number º
º $ Hex constant ³ BD Insert it as a Decimal number º
º ^ ASCII constant ³ BN Show on status line in decimal º
º % The variable ³ BS Show on Status line in hex º
º @ Character under cursor ³ BT Set it to scooped decimal value º
º K Keystroke (waits) ³ BX Set it to scooped hex value º
º Z Space remaining in buffer ³ : Move to location in variable º
º . Cursor location in buffer ³ _ Set loop count with variable º
º C Cursor column position ÃÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¶
º + - Add, Subtract ³ SEARCH º
º * / Multiply, Divide ³ S For a string º
º \ Remainder ³ ^W = Wild character º
º & ! And, Or ³ ~W = Word separator º
º = # Equal, Not equal ³ N Entire file (N edit buffers) º
º > < Greater than, Less than ³ F Find and replace º
º >= Greater than or equal ³ + - Search forward or backward º
º <= Less than or equal ³ º
ÈÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÏÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍ¼
 ^ = Ctrl key ~ = Alt key Fn = Function key SFn = Shifted

10

2.2.1 Executing Commands Multiple Times

All the commands available in command mode can be preceded by a number.
The number causes the command to be executed that many times. For
example, "5D" deletes five characters back from the cursor. If there's
no number, or if it's zero, the effect is the same as 1.

Sometimes you want to execute a command over and over until the command
fails. For example, you might want to search for and replace some string
throughout the edit buffer. You could use a very large number, but the
symbol "#" indicates that a command is to be executed repeatedly until it
fails. For example, to find the final occurrence of the word "frog" type:

 <Esc>#sfrog<Esc><Esc>

2.2.2 Editing Command Lines

Macros are normally entered on the command line by typing them directly.
However, sometimes when the macro is complex, it's easier to edit it
using the capabilities of XED. There are two commands that let you do
this. The first command, "V", is itself executed from the command line.
It copies text from the edit buffer into the command line. This way, you
can create a macro in the edit buffer then copy it into the command line
for execution. The "V" command copies text starting at the cursor. It
copies forward from the cursor to the first double <Esc>. (You can insert
<Esc> into the edit buffer by typing Ctrl+^ followed by <Esc>.)

XED also lets you move macros that are already in the command line into
the edit buffer by typing Ctrl+V. This can be used to modify or repair a
macro that's in a command line.

2.2.3 Function Keys

The following command-line commands are used so frequently that they're
duplicated on the function keys:

 FUNCTION ACTION EQUIVALENT COMMAND
 -------- ------ ------------------
 F4 Get next buffer from file G
 F5 Insert Scoop X
 F6 Remargin paragraph M
 F8 Erase scoop E

3.0 SEARCHING

XED has several search commands that let you quickly scan for strings of
characters. The basic search command looks like this:

 <Esc>Sanimals<Esc><Esc>

If you enter this on the command line, it searches forward from the
cursor to the first occurrence of "animals". If you type Ctrl+G, it's
re-executed, and the next occurrence of "animals" is located.

 11

You can do several types of searches. For example, searches normally go
forward from the cursor, but you can set the search to go backward by
typing Ctrl+- (Ctrl+dash, but not on the keypad). Typing Ctrl+- a second
time, changes back to forward searches. The search direction is indicated
on the status line by an arrow. The arrow points to the right if the
search is forward, and points to the left if the search is backward.

You also can force a search to be forward or backward by placing a "+" or
"-" in front of it. For example:

 <Esc>-Sfrog<Esc><Esc>

This forces a backward search for the string "frog". This feature is
useful with macros when you don't know the direction that was last set by
the Ctrl+- command.

XED lets you change the case sensitivity of searches. Normally, searches
are case sensitive, which means that uppercase and lowercase letters are
treated as different characters--uppercase "A" does not match lowercase
"a". Typing Ctrl+] turns off case sensitivity so, for example, searching
for "COWBOY" also locates the string "Cowboy". The case sensitivity is
shown on the status line. If "S#s" is shown, searches are case sensitive,
and if "S=s" is shown, they are not.

Sometimes you want to search for a string, but the match doesn't need to
be exact. For example, you might want to locate a string like "the high
was 78 degrees", but the temperature could be any number. The "wildcard"
character, Ctrl+W, is used to do this. When Ctrl+W is placed in a search
string, it matches any character. As a result, the search string: "the
high was <Ctrl+W><Ctrl+W> degrees" finds the string no matter which
(two-digit) temperature was used.

If you want to search for a short word, such as "an" or the variable name
"I" then you want to search for it as a whole word. This way you skip
instances like "and" and "many" or "LINE" and "If". Placing Alt+W in a
search string matches any non-alphanumeric character. So for example, the
search string: <Alt+W>I<Alt+W> finds only instances of the variable "I".

The above search commands only search the current edit buffer. If you
have a file that's larger than the edit buffer, you can search your
entire file using the "N" search command. This works the same way as the
"S" search, but when it reaches the end of an edit buffer, it auto-
matically writes the current buffer to the output file, and then loads
the next buffer and searches it. The search continues until either the
string is found or the end of the file is reached. The "N" search should
only be done in the forward direction.

Oftentimes you want to search for one string and replace it with
another. The "F" command is like a search except that it replaces the
string with a new string. The syntax of this command is:

 F<string1><Esc><string2><Esc>

12

XED searches for <string1> and, if found, replaces it with <string2>. The
two strings do not need to be the same length. If the second string is
empty, XED simply deletes the first string.

3.1 EXAMPLES

Here are some example command lines.

 <Esc>sprint<Esc>i line<Esc><Esc>

This searches forward for the word "print", and inserts a space and the
word "line" immediately after it.

 <Esc>ftheir<Esc>they're<Esc>j<Esc><Esc>

This command line changes every occurrence of the word "their" to
"they're".

 <Esc>S@<Esc>DRI<Enter><Esc>J<Esc><Esc>

This macro can be used to delete all comments from an assembly language
program. It searches for each occurrence of a "@" character, deletes it
and the rest of the line, then inserts a new carriage return to replace
the one deleted by the "R" command. This is repeated until the end of the
edit buffer is reached.

4.0 MARGINS

XED has several ways to format text. The first is the margin command. This
formats a paragraph so that the margins are aligned to a specified column.
The "M" margin command can be used with one, two or three arguments. If
three arguments are used, the left and right margins and the paragraph
indenting are set. For example:

 <Esc>M8,64,4<Esc><Esc>

The first argument is the left margin, the second is the right margin,
and the third is the number of spaces to indent the first line of a
paragraph. The third argument is optional. Entering the arguments sets
the positions; it does not remargin a paragraph. Remargining is accom-
plished by entering the "M" command without arguments or by hitting F6.

As an example, if you select margin settings of M8,64,4 then hit F6, the
paragraph at the cursor is formatted so that the left margin is eight
spaces from the left side of the screen, the right margin ends in column
64, and the first line of the paragraph is indented four spaces, or 12
spaces from the left side. Once you have entered the margin specifica-
tion, you can format other paragraphs. If you "margined" using the "M"
command without arguments, you can margin other paragraphs using Ctrl+G
to re-execute the command line. Hitting F6 margins a paragraph without
requiring a command line.

 13

This next text formatting feature is called "wordwrap". It automatically
inserts a carriage return at the end of each line as you type it. This
saves you from having to hit Enter. Wordwrap occurs when you are typing
characters and the cursor reaches the right margin. At this point XED
searches backward for the first space. If it finds one, it replaces it
with a carriage return. If no space is found within 16 characters, no
wordwrap occurs until a space is typed. Wordwrap only occurs on space
characters.

Wordwrap mode is turned on and off with the F3 key. XED starts with
wordwrap turned off. Striking F3 turns it on. Striking F3 again turns it
off. When wordwrap is turned on, the up arrow (^) marker on the ruler
(which indicates the bell column) is changed to a diamond.

When XED is in wordwrap mode it inserts spaces, if necessary, in front of
each new line. This makes the wordwrapping consistent with the margin
command.

Another text formatting feature is the bell column. When the cursor
reaches the bell column, the computer beeps, warning you that the line
might be too long. This is similar to the bell on a typewriter. The bell
column is set with the "M" command. If you use the "M" command with a
single argument, it sets the bell column. For example:

 <Esc>M65<Esc><Esc>

This sets the bell column to the 65th column from the left side of the
screen.

Ctrl+U is a direct mode command that's used to indent the current line to
the same column as the line immediately above it. It's frequently used by
programmers to indent blocks of code.

The final text formatting command, Esc Y, is used to center a line of
text. This is useful for titles. Space characters are inserted in front
of the line so that it's evenly centered between the left and right
margins.

5.0 THE SCOOP

The scoop is used to pick up segments of text and move them to other
locations. Words, phrases, paragraphs, and even large blocks of text can
be moved easily. The scoop also can be used to duplicate the same block
of text over and over. The scoop is similar to what other editors call a
clipboard used for cut, copy and paste operations.

14

5.1 LINE SCOOPS

With XED in direct mode, the scoop is turned on by typing Ctrl+R and
turned off with Ctrl+F. When the scoop is on, text can be pulled into it
by moving the cursor backward over the text. Any backward movement of the
cursor, including deletes, scoops up text. You can delete and scoop at
the same time.

While the scoop is on, moving the cursor forward causes the equivalent
amount of text to be removed from the scoop. Be careful! Generally, the
scoop should be turned off before resuming normal editing.

The text that's in the scoop can be inserted into the edit buffer at any
time. Executing an "X" command on the command line or F5 from direct
mode, causes the entire contents of the scoop to be inserted into the
edit buffer at the cursor. The text remains intact in the scoop until
it's erased with an "E" on the command line or by hitting F8. Many copies
can be inserted into different locations in the edit buffer.

Text from the scoop also can be inserted into the edit buffer using
Ctrl+Y. This inserts the text and erases the scoop, which is useful when
moving many separate pieces of text.

You can scoop up to 99,999 characters, but the free space in the edit
buffer can be as small as 10,000 characters. As a result, you can easily
scoop a block that's too big to insert, so you must be careful. If you
delete as you scoop, there's always enough space to insert the block.

When you have a file that's larger than the edit buffer and you need to
edit it in several stages, you could run into a problem trying to carry a
large scoop full of text from one buffer to another. XED protects you
from this by checking the size of the scoop contents when it reads in the
next text buffer. It always leaves a free space that's the size of the
scoop contents plus about 1000 characters. This way you can always insert
the scoop when you move to the next buffer.

5.2 COLUMN SCOOPS

It is often useful to take a block of text and insert it into the middle
of another block of text. This works fine using the above scoop commands
when you want to insert between lines, but it doesn't work at all when
you want insert between columns. So XED provides a second way to insert
text. Each line of the inserted text starts at the same column. If some
of the lines you are inserting into are shorter than the specified
column, then these short lines are extended with spaces to allow each
inserted line to start in the same column. Any tabs on the line are taken
into account.

 15

This feature works like the line-insert command. You simply move the
cursor to a location in the text and press Shift+F5. The block of text is
inserted with each line starting at the cursor column. Here's an example:

| This is a small piece |
| of text that can be |
inserted anywhere.

SEE THE QUICK BROWN FOX JUMP OVER THE LAZY DOG
SEE THE QUICK BROWN FOX JUMP OVER THE LAZY DOG
SEE THE -------------------------QUICK BROWN FOX JUMP OVER THE LAZY DOG
SEE THE | This is a small piece |QUICK BROWN FOX JUMP OVER THE LAZY DOG
SEE THE | of text that can be |QUICK BROWN FOX JUMP OVER THE LAZY DOG
SEE THE | inserted anywhere. |QUICK BROWN FOX JUMP OVER THE LAZY DOG
SEE THE -------------------------QUICK BROWN FOX JUMP OVER THE LAZY DOG
SEE THE QUICK BROWN FOX JUMP OVER THE LAZY DOG
SEE THE QUICK BROWN FOX JUMP OVER THE LAZY DOG

As you see, the small block of text has been inserted into the middle of
the larger block. It was scooped up the normal way with Ctrl+R some
Ctrl+Ws and Ctrl+F, then the cursor was moved to the desired position
where the block was inserted with Shift+F5.

It is also useful to cut blocks of text out of the middle of a larger
block. The normal scoop command will not do this (except by picking up
the whole block, copying it somewhere, trimming away any excess on the
left and right sides, and then picking it up again).

The column scoop command lets you to pick up any rectangular block of
text. The commands to do column scoops are similar to line scoops. You
simply move the cursor to the upper-left corner of the rectangular area
you want and press Alt+R. You then move the cursor to the lower-right
corner and press Alt+F. Alt+F causes the text in the block defined by the
two cursor positions to be copied into the scoop. Here's an example that
illustrates the kind of block that can be scooped:

SEE THE QUICK BROWN FOX JUMP OVER THE LAZY DOG
SEE THE QUICK BROWN FOX JUMP OVER THE LAZY DOG
SEE THE QUICK BROWN FOX JUMP OVER THE LAZY DOG
SEE THE QU ------------------------- LAZY DOG
SEE THE QU |K BROWN FOX JUMP OVER T| LAZY DOG
SEE THE QU |K BROWN FOX JUMP OVER T| LAZY DOG
SEE THE QU |K BROWN FOX JUMP OVER T| LAZY DOG
SEE THE QU ------------------------- LAZY DOG
SEE THE QUICK BROWN FOX JUMP OVER THE LAZY DOG
SEE THE QUICK BROWN FOX JUMP OVER THE LAZY DOG
SEE THE QUICK BROWN FOX JUMP OVER THE LAZY DOG

If you start at the lower-right corner of the block to be scooped instead
of the upper-left corner then when the block is scooped with Alt+F, it
will be replaced with space characters in the edit buffer. This is
similar to what other programs call a "cut" operation.

If you want to copy a block into the edit buffer without shifting the
existing text to the right, as is often the case with tables and
drawings, then use overwrite mode (see 6.2).

16

6.0 EXTENDED ASCII CHARACTERS

XED supports the IBM PC's extended ASCII character set. It can display
most of the special graphic characters available on the PC. The PC has
symbols for the characters with values of 128 through 254. It also has
symbols defined for control characters (1 through 31). XED can display
all the symbols for the characters from 128 through 254. It does not
display the symbols for control characters because it's more important to
be able to recognize the control character than it is to view these
symbols.

The complete set of ASCII characters can be displayed by typing Shift+F2.
This also provides a convenient way to insert an extended ASCII character
into your text. Simply type its hex code. For example, to insert the
character "¬", type Shift+F2 followed by "AC".

6.1 BOX CHARACTERS

You can make nice looking charts and drawings using the box characters
shown here:

 ÚÄÄÄÂÄÄÄ¿ ÕÍÍÍÑÍÍÍ¸ ÖÄÄÄÒÄÄÄ· ÉÍÍÍËÍÍÍ»
 ³ ³ ³ ³ ³ ³ º º º º º º
 ÃÄÄÄÅÄÄÄ´ ÆÍÍÍØÍÍÍµ ÇÄÄÄ×ÄÄÄ¶ ÌÍÍÍÎÍÍÍ¹
 ³ ³ ³ ³ ³ ³ º º º º º º
 ÀÄÄÄÁÄÄÄÙ ÔÍÍÍÏÍÍÍ¾ ÓÄÄÄÐÄÄÄ½ ÈÍÍÍÊÍÍÍ¼
 1 2 3 4

One way to get these extended ASCII characters is to use Shift+F2, but
there's an easier way. Press the Alt+D key to enter box character mode.
The center box character (Å) will appear in the middle of the status
line:

ok Cmd: 0 Scoop: 31971 S#s > ins Å Rem: 28342 At: 4220 Col: 0

In this mode, the numeric keypad (with Num Lock enabled) is used to type
the box characters as follows:

 ÚÄÄÄÄÒÄÄÄÄÒÄÄÄÄÒÄÄÄÄ¿
 ³7 Ú º8 Â º9 ¿ º+ ³ ³
 ÆÍÍÍÍÎÍÍÍÍÎÍÍÍÍ¹ ³
 ³4 Ã º5 Å º6 ´ º ³
 ÆÍÍÍÍÎÍÍÍÍÎÍÍÍÍÎÍÍÍÍµ
 ³1 À º2 Á º3 Ù º ³
 ÆÍÍÍÍÊÍÍÍÍÎÍÍÍÍ¹ ³
 ³0 Ä º º ³
 ÀÄÄÄÄÄÄÄÄÄÐÄÄÄÄÐÄÄÄÄÙ

There are four sets of box characters consisting of combinations of
single and double lines. Each time you press Alt+D, you select the next
set. Pressing Alt+D five times sequences through the four sets of box
characters and back to the normal numeric characters (whereupon the box
character disappears from the status line).

 17

6.2 INSERT AND OVERWRITE MODES

XED has two modes for entering text: insert mode, and overwrite mode.
Insert mode is the normal mode. When XED is in this mode, existing
characters are shifted to the right before a new character is inserted.
This way no text is lost as new text is added. In overwrite mode, the
character under the cursor disappears whenever a new character is
typed.

XED starts in insert mode. Hitting the Insert key changes between insert
and overwrite mode. When XED is in insert mode, the letters "ins" appear
on the status line, and when it's in overwrite mode, the letters "OVR"
appear on the status line. Because overwrite mode can be dangerous, the
"OVR" symbol is outlined in yellow to alert you.

Overwrite mode is useful for making diagrams and drawing box characters.
You can fill an area with spaces then type in the appropriate text. In
overwrite mode the text won't shift.

When in overwrite mode, inserting the scoop overwrites the existing text.
This can be useful in some instances, and a disaster in others. XED
protects you as much as possible from overwrite errors. For example, it
does not overwrite a carriage return. Also, it does not overwrite if the
character you enter is a carriage return. This way, entering blank lines
does not overwrite existing text.

The Backspace key works differently in overwrite mode. In overwrite mode,
Backspace replaces the deleted character with a space. This way, the text
doesn't shift. To prevent extraneous spaces from accumulating at the
beginning of a line, Backspace does not replace carriage returns with a
space--it just deletes them.

7.0 LINES

7.1 CARRIAGE RETURNS AND LINE FEEDS

XED automatically handles two conventions for terminating lines. The
Windows convention terminates lines with a carriage return followed by a
line feed, while the Linux convention terminates them with just a line
feed.

When a file is read into the edit buffer, line terminators are changed to
carriage returns. When the file is written back out, the carriage returns
are converted back to the original termination method: either a carriage
return converted to a line feed or a carriage return followed by a line
feed. If a file is created from scratch (no input file) then the Linux
convention is used.

18

7.2 COUNTING LINES

The line number that the cursor is on is displayed at the left end of the
status line when the F7 key is pressed. Lines are counted from the
beginning of the file, not just from the beginning of the current edit
buffer. The open command "O" resets the line count, even if you are using
multiple buffers. The first line is line 1.

7.3 LONG LINES

Some editors have trouble handling extremely long lines of text. This
usually occurs when trying to edit some sort of hex loader file that has
no carriage returns. XED handles lines of unlimited length. A long line
appears as a single line. By moving the cursor forward or back, the line
scrolls left or right.

To facilitate handling long lines, the Ctrl+W and Ctrl+S commands limit
how far they move the cursor. These commands normally move backward or
forward one complete line. However, if you have just one extremely long
line, moving up or down a line would take you to the beginning or end of
the text, making these commands useless. To deal with this, XED limits
the number of characters that the cursor moves to 255. This lets you step
through a long line 255 characters at a time.

8.0 FILE HANDLING

As previously explained, XED is normally executed from a command line by
typing something like:

 xed tax.let

This opens an input file named tax.let and, when you exit from XED,
creates a new copy of this file that contains any changes. XED normally
creates backup files while it works. This protects you from losing data.
XED never overwrites the input file. Instead, it does all writing to a
temporary file. When you exit, the original input file is renamed to a
.bak file, and the temporary file is renamed to match the original file.
This way, there's always an unmodified copy of your file.

Normally, the input and output files have the same name. Sometimes
however, it's useful to read from one file and write to another with a
different name. You can do this by typing two file names after XED when
you start it. For example:

 xed tax.let tax2015.let

This causes XED to read from tax.let and to write to tax2015.let.

When a file is bigger than the edit buffer, XED lets you edit the file in
pieces. You do this by working your way through the file, from start to
finish, one buffer at a time. This way XED can edit files that are bigger
than memory.

 19

When you start XED, it reads as much information from the input file as
it can. If the file is larger than the edit buffer, it reads enough
information to fill the buffer, leaving about 10,000 characters of free
space for insertions. The "G" command from the command line or F4 from
direct mode writes the current buffer to the output file, and reads the
next section of the input file into the edit buffer. This way, you can
work through a file of any size. Because of the backup file feature, you
cannot move backwards from one buffer to another, only forwards.

8.1 FILE MANIPULATION

Most of the time, you edit a document using only the simplest file
handling commands. In fact, most of the time, the only file handling
command you use is "Q", which saves your file and returns to the OS.
However, sometimes it's useful to move pieces of text from one file to
another. XED has several command-line commands that can be used to
manipulate files.

The first command is the "A" append command. The append command reads
text from the input file. If the edit buffer is empty, the command fills
the buffer, leaving space for at least 10,000 more characters. If the
edit buffer is nearly full, the append command reads in only one line of
text each time it's executed. All information read by the append command
is inserted at the cursor. If you want the append to be inserted at the
end of the edit buffer, the cursor must be at the end of the edit buffer.

XED has a feature that helps you deal with large files. Ordinarily when a
file is too large to fit into a single edit buffer, you edit the file
sequentially, one buffer at a time. But occasionally, the information you
want to work with falls right on the border between two buffers. One way
to solve this problem is to use the "A" command to append a few more
lines into the current buffer. Unfortunately, every line you append
decreases the free space available in the buffer.

This feature works like the "A" append command except that it writes one
line out of the buffer for every line it reads in. This way, you can move
the whole buffer forward a line at a time while preserving the free
space. In effect, the whole buffer scrolls one line at a time through the
text.

There are two commands that are used to move through the file this way:
Ctrl+Page_Down and Ctrl+End. Ctrl+Page_Down moves the buffer forward one
line at a time. Ctrl+End moves forward one page at a time. Each time one
of these keys is struck, one line or one page from the beginning of the
buffer is written to the output file and deleted from the buffer, and one
line or one page is read into the end of the buffer. Since the lines
written and deleted probably won't be the same size as the lines read
into memory, the amount of free space will expand and contract
accordingly. [This feature is currently not implemented.]

20

The next command is the "O" open command. The open command is used to
reopen the current file or open a brand new file. For example:

 <Esc>O<Esc><Esc> - Reopen the current files

 <Esc>O"cat.txt"<Esc><Esc> - Open a new file called cat.txt

In the first example, the open command is used with no argument. This
reopens the current input and output files. Reopening resets their
pointers to zero. In effect, you are starting over with these files, and
any changes that were written to the output file are discarded. This is
dangerous, but it can be useful as long as you realize that you are
starting over. Normally, this command is used with the "A" append
command described above.

The second example illustrates opening a new file. If the "O" command is
followed by a file name in quotes, a new file is opened. Again, both the
input and output file pointers are reset, so that any information that
was written to the output file is lost. However, information in the edit
buffer and in the scoop is preserved making it possible to move infor-
mation from one file to another. You can even open a series of files and
combine pieces of information from each.

As an example, lets say you want to move a block of text from frog.fil to
cat.fil. You begin by editing frog.fil normally:

 xed frog.fil

Next, scoop up the text you want then delete the rest of the buffer using
the kill command:

 <Esc>K<Esc><Esc>

Now open and append cat.fil using the following command:

 <Esc>o"cat.fil"a<Esc><Esc>

You can now insert the text in the scoop anywhere you want in cat.fil.
When you are done, exit normally using the "Q" command.

You can use this technique to move through any number of files picking up
pieces of text as you go. Just keep opening new files until you have
everything you need. When you are ready, open the destination file and
insert the text into the proper location, then exit using the "Q"
command. The information goes into the last file you edit.

8.2 CHANGING TERMINALS

Linux, being a multiprocessing system, lets you switch to another
terminal at any time, even while editing a file. For example, if you
press Alt+F2, it switches to a new screen where you can login and run a
completely independent session. Here, you can even run XED on other files
(but don't run it on the original file or you may lose changes). Pressing
Alt+F1 takes you back to the original editing session. You must press
another key, such as an arrow key, to refresh the screen. There are six
of these virtual terminals available by pressing Alt+F1 through Alt+F6.

 21

9.0 ADVANCED MACROS

9.1 COMMAND-LINE LOOPS

Loops repeatedly execute a group of commands on the command line. They
are similar to a "for" loop in a program. Loops are created by enclosing
a group of commands inside a set of braces "{ }". If a number is placed
in front of the braces, every command inside the braces is executed that
number of times. If an error is detected within the loop, the loop aborts
immediately without executing any more commands between the braces. For
example, if you are doing a search and the search fails, the loop stops
before executing the rest of the commands inside the loop. Here's an
example:

 <Esc>10{SJuly <Ctrl+W><Ctrl+W>, <Esc>I2015<Esc>}<Esc><Esc>

This command line searches for any date in July and adds "2015" after it.
It executes 10 times or until it fails to find the search string.

Loops can be nested. For example:

 <Esc>20{10{Sfrog<Esc>Sdog<Esc>}Ipig<Esc>}<Esc><Esc>

This command does 10 searches for a complex string then inserts the
string "pig". It does this whole operation 20 times.

If you use a "J" command within a loop the "J" causes the execution to
jump to the beginning of the loop, not to the beginning of the whole
command line.

Errors cause the current loop to abort. If a loop is nested or if there
are other commands on the command line after the loop, XED continues to
execute these commands. When there's an error within a loop, XED clears
the error as soon as it exits from the loop so it can continue executing
commands outside the loop. This is useful for things like searching for
the last occurrence of a string. For example, this locates and marks the
innermost "begin-end" pair in a block of code:

 <Esc>#{Sbegin<Esc>}I *<Esc>Send<Esc>I *<Esc><Esc>

Assuming you have a single procedure in the edit buffer, this command
repeatedly searches for "begin". When the search fails, the cursor is
located just after the last "begin", which is the innermost "begin". The
code then places an asterisk after the "begin" and then searches for the
next "end". This "end" is the corresponding innermost "end", and an
asterisk is placed after it.

22

9.2 EXPRESSIONS AND CONDITIONALS

9.2.1 Expressions

XED can do complex editing tasks using expressions and conditional
operations. The syntax is relatively simple.

Expressions are a series of mathematical or Boolean operations that, when
evaluated, result in a single numeric value. XED uses expressions to test
for special situations, like a unique combination of characters.

Expressions are always enclosed in parentheses "()". Expressions consist
of two kinds of items: factors and operators. A factor is something that
has a value, such as the number 2. Operators operate on factors, like the
plus sign operates on 2 + 3. Here's a list of the factors and operators
available in XED:

 FACTORS

 123 Any decimal number
 $ Returns the value of the hex number that follows
 ^ Returns the ASCII value of the next character
 % Returns the value of the Variable (see 9.2.2)
 @ Returns the value of the character under the cursor
 K Waits for then returns the value of a keystroke
 Z Returns the size of the free space in the edit buffer
 . Returns the cursor location in the edit buffer
 C Returns the column number of the cursor position

 OPERATORS

 + Add
 - Subtract
 * Multiply
 / Divide
 \ Remainder of a divide
 & Bit-wise Boolean AND
 ! Bit-wise Boolean OR
 = Compare for equality
 # Compare for not equal
 > Compare for greater than
 < Compare for less than
 >= Compare for greater than or equal
 <= Compare for less than or equal

Note that all these factors and operators can only be used in an expres-
sion. In other words, they can only be used inside parentheses. Some of
these characters have different meanings outside expressions. For
example, "C" means "return the column number of the cursor" inside an
expression and "close the file" outside an expression.

 23

When XED evaluates an expression, it reduces all the operators and
factors to a single numeric value. For example, the expression: (1+2+3)
reduces to the value 6. Sometimes an expression is used as a Boolean
value. In other words, sometimes the expression is reduced to a single
true or false value. For example:

 (@=^A)

In this expression, if the character under the cursor is "A", then the
expression evaluates to "true". In XED, "true" is the value -1, or any
non-zero value, and "false" is 0.

9.2.2 The Variable

The result of the evaluation of an expression is stored into a special
place called the "Variable". There's only one variable, and every time an
expression is evaluated, the old value is overwritten by the new value.

You also can set the Variable with a number that's in the scoop. The
number is converted from its ASCII representation. For example, the ASCII
string "193" is converted to the numeric value 193. There are two
commands that perform this conversion:

 BX Interprets text as hexadecimal
 BT Interprets text as decimal

These commands search from the beginning of the scoop for a decimal or
hexadecimal string (which must be within the first 80 characters or a
zero will be returned). The resulting converted number is stored in the
Variable.

9.2.3 Conditionals

Conditionals are used to selectively perform an editing operation.
Conditional operations are indicated with square brackets "[]". Commands
enclosed in square brackets are only executed if the value of the
Variable is true. For example:

 <Esc>#{<Ctrl+A>(@=$1B)[<Ctrl+A>D]}<Esc><Esc>

This command line searches for escape characters ($1B)--something that
normally cannot be done--and deletes them. The command line starts by
moving the cursor forward one character. If the cursor is on an escape
character, the commands in the square brackets are executed. These
commands move the cursor forward one character and then delete the
escape. The "#" repeats the entire command until the end of the buffer
is reached.

Conditionals can be nested, or placed inside loops. They cannot have a
numeric value in front of them like other commands. For example, this
would cause an error:

 <Esc>234[Ifrog<Esc>]<Esc><Esc>

24

9.2.4 Output Commands

XED has several commands to display or insert values:

 BA Inserts the Variable as an ASCII character
 BD Inserts the Variable as a decimal number
 BH Inserts the Variable as a hex number
 BS Shows the value of the Variable on the status line in hex
 BN Shows the value of the Variable in decimal

Three of these commands insert values into the edit buffer. As you will
see in the examples below, this is useful for creating a series of
numbers in your text. The "BS" command can be used to display the ASCII
value of any character in your text.

9.2.5 Looping

If you combine expressions and conditionals with loops, you can create
some powerful macros. To facilitate the use of conditionals with loops,
XED has the semicolon ";" command. This forces a loop to terminate at the
point it's encountered. This provides a way to terminate a loop based on
a condition. For example:

 <Esc>#{<Ctrl+A>(@=$1B)[<Ctrl+A>D;]}<Esc><Esc>

Like above, this command searches through the text for an escape
character ($1B); but when it finds one, it deletes it, and then stops.

The command iteration count is normally set by putting a number in front
of a command. For example:

 <Esc>10Inow is the time<Esc><Esc>

This inserts ten copies of "now is the time" into the buffer. You also
can set the loop iteration count using the Variable. This enables the
number of iterations to be calculated with an expression or to be set by
a condition. The underline character "_" copies the value of the Variable
into the iteration count. Since the value of the Variable is set by the
value of the last expression evaluated, any command can be executed a
calculated number of times. For example, the following command can be
used to pad a string with spaces:

 <Esc>S<Enter><Esc><Ctrl+Q>(8-C)<Ctrl+W>_I <Esc><Esc>

This command right-justifies a string that's up to eight characters long.
The string is assumed to be on a line by itself. The first part searches
for the carriage return that terminates the line. The Ctrl+Q backs up to
the last character of the string. The column position is then subtracted
from 8. This gives the number of spaces needed to right justify the
string. The cursor is then moved to the beginning of the line, and the
proper number of spaces are inserted.

 25

9.2.6 Cursor Movement

This command moves the cursor to a location in the edit buffer depending
on the value of an expression. The colon command ":" moves the cursor to
the location specified by the Variable. For example, this moves the
cursor 20 locations ahead if the character under the cursor is an "a".

 <Esc>(@=^a)[(.+20):]<Esc><Esc>

9.2.7 Examples

The following examples illustrate the power of expressions and
conditionals.

Display the value of the character under the cursor in hex:

 <Esc>(@)BS<Esc><Esc>

Search for the first occurrence of a numeric character:

 <Esc>#{<Ctrl+A>(@>=$30 & @<=$39)[;]}<Esc><Esc>

Search for the word "the" and if the keystroke is "+" then delete it:

 <Esc>Sthe<Esc>(K=^+)[DDD]<Esc><Esc>

List the numbers 0 through 99 on the left side of the screen:

 <Esc>(0)100{bdi<Enter><Esc>(%+1)}<Esc><Esc>

Count the number of "a" characters beyond the cursor, and display the
number on the status line:

 <Esc>(0)#{sa<Esc>(%+1)}bn<Esc><Esc>

Move to the 81st column on the next line with more than 80 columns:

 <Esc><Ctrl+S>#{<Ctrl+A>(C>80)[;]}<Esc><Esc>

Display the hex code and character for the full ASCII character set:

 <Esc>(0)256{BHI - <Esc>BAI<Enter><Esc>(%+1)}<Esc><Esc>

9.2.8 Break Command

It is possible to write macro commands that are infinite loops. You can
also write commands that, although they are not infinite, take hours or
days to complete. XED lets you exit from these loops by typing
Ctrl+Break. When you hit Ctrl+Break to abort a loop, the message "break"
appears on the status line.

