
 ßÛÛÛÛÛÛß ßÛÛÛÛÛß ßÛÛÛÛÛÛÛÛÛÜÜ ßÛÛÛÛÛß ÜÛÛÛÛÛÛÛÜ
 ÛÛÛ ÛÛ ÛÛÛ ßÛÛÛÜ ÛÛÛ ÛÛÛß ßÛÛÛ
 ÛÛÛ ÛÛ ÛÛÛ ÛÛÛ ÛÛÛ ÛÛß ÛÛÛ
 ÛÛÛ ÛÛ ÛÛÛ ÛÛÛ ÛÛÛ ÛÛÛ ÛÛÛÛÛ
 ÛÛÛ ÛÛ ÛÛÛ ÛÛÛ ÛÛÛ ÛÛÛ ÛÛ ÛÛÛ
 ÛÛÛÛÛ ÛÛÛ ÛÛÛ ÛÛÛ ÛÛÛ ÛÛ ÛÛÛ
 ÛÛÛ ÛÛÛ ÜÛÛÛß ÛÛÛ ÛÛÛ ÛÛ ÛÛÛ
 ÛÛÛÛ ÛÛÛÛÛÛÛÛßß ÛÛÛ ÛÛÛ ÛÛ ÛÛÛ
 ÛÛ ÛÛÛ ÛÛÛ ÛÛÛ ÛÛÛ ÛÛ ÛÛÛ
 ÛÛ ÛÛÛ ÛÛÛ ÛÛÛ ÛÛÛ ÛÛ ÛÛÛ
 ÛÛ ÛÛÛ ÛÛÛ ÛÛÛ ÛÛÛÛÛ ÛÛÛ
 ÛÛ ÛÛÛ ÛÛÛ ÛÛÛ ÛÛÛ ÜÛÛ
 ÛÛ ÛÛÛ ÛÛÛ ÛÛÛ ÜÛ ÛÛÛÜ ÜÛÛÛ
 ÜÛÛÛÛÛÜ ÜÛÛÛÛÛÜ ÜÛÛÛÛÛÜ ÜÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛß ßÛÛÛÛÛÛÛß

 P R O G R A M M I N G L A N G U A G E M A N U A L

 F O R T H E R A S P B E R R Y P I

 V E R S I O N 2 . 0

 ÚÄ¿ ÚÄ¿ ÚÄ¿ ÚÄ¿ ÚÄ¿ ÚÄ¿ ÚÄ¿ ÚÄ¿
 ³ ÀÄÙ ³ ³ ÀÄÙ ³ ³ ÀÄÙ ³ ³ ÀÄÙ ³
 ÀÄ¿ ÚÄÙ ÀÄ¿ ÚÄÙ ÀÄ¿ ÚÄÙ ÀÄ¿ ÚÄÙ
 ÚÄÙ ÀÄÄÄÄÄÙ ÀÄ¿ ÚÄÙ ÀÄÄÄÄÄÙ ÀÄ¿
 ³ ÚÄÄÄ¿ ÚÄÄÄ¿ ³ ³ ÚÄÄÄ¿ ÚÄÄÄ¿ ³
 ÀÄÙ ÚÄÙ ÀÄ¿ ÀÄÙ ÀÄÙ ÚÄÙ ÀÄ¿ ÀÄÙ
 ÚÄ¿ ÀÄ¿ ÚÄÙ ÚÄ¿ ÚÄ¿ ÀÄ¿ ÚÄÙ ÚÄ¿
 ³ ÀÄÄÄÙ ÀÄÄÄÙ ÀÄÙ ÀÄÄÄÙ ÀÄÄÄÙ ³
 ÀÄ¿ ÚÄÄÄ¿ ÚÄÄÄ¿ ÚÄÄÄ¿ ÚÄÄÄ¿ ÚÄÙ
 ÚÄÙ ÀÄ¿ ÀÄÙ ÚÄÙ ÀÄ¿ ÀÄÙ ÚÄÙ ÀÄ¿
 ³ ÚÄ¿ ³ ÚÄ¿ ÀÄ¿ ÚÄÙ ÚÄ¿ ³ ÚÄ¿ ³
 ÀÄÙ ÀÄÙ ³ ÀÄÄÄÙ ÀÄÄÄÙ ³ ÀÄÙ ÀÄÙ
 ÚÄ¿ ÚÄ¿ ³ ÚÄÄÄ¿ ÚÄÄÄ¿ ³ ÚÄ¿ ÚÄ¿
 ³ ÀÄÙ ³ ÀÄÙ ÚÄÙ ÀÄ¿ ÀÄÙ ³ ÀÄÙ ³
 ÀÄ¿ ÚÄÙ ÚÄ¿ ÀÄ¿ ÚÄÙ ÚÄ¿ ÀÄ¿ ÚÄÙ
 ÄÄÙ ÀÄÄÄÙ ÀÄÄÄÙ ÀÄÄÄÙ ÀÄÄÄÙ ÀÄÄ

 All rights to the XPL0 software and its documentation are reserved by the
 authors. Copyright 2017 software: P. Boyle; manual: L. Fish; Raspberry Pi
 version: L. Blaney.

 This manual is for the small group of individuals who, despite massive
 support behind other programming languages, continue to use XPL0. It's
 also for anyone who wonders what all the fuss is about.

 Free, open-source versions of the compilers (interpreted, assembly-code
 compiled, and optimizing) along with many utilities, games and other
 examples are available from the official web site: xpl0.org

 C O N T E N T S

 0: INTRODUCTION 1
 0.0 Example Program: GUESS . . 1
 0.1 Compiling and Running . . . 4
 0.2 Syntax 4

 1: FACTORS 7
 1.0 Integer Constants 7
 1.1 Hex and Binary Constants . . 7
 1.2 ASCII Constants 8
 1.3 Real Constants 8
 1.4 Variables 8
 1.5 Declarations 9
 1.6 Declared Constants * . . . 9
 1.7 Example Program 11
 1.8 Free Format 12

 2: EXPRESSIONS 14
 2.0 Arithmetic Expressions . . 14
 2.1 Mixed Mode 15
 2.2 Unary Operators 15
 2.3 Comparisons 16
 2.4 True and False * 17
 2.5 Boolean Expressions * . . . 18
 2.6 Short-Circuit Booleans * . . 20
 2.7 Example Program: SETS * . . 21
 2.8 Shift Operators * 23
 2.9 If Expression * 24
 2.10 Constant Expressions * . . 24
 2.11 Conditional Compile * . . . 25
 2.12 Hazards of Real Numbers * . 25

 3: STATEMENTS 27
 3.0 Assignments 27
 3.1 Begin - end 27
 3.2 If - then - else 28
 3.3 Case - of - other * . . . 29
 3.4 While - do 31
 3.5 Repeat - until 31
 3.6 Loop - quit 32
 3.7 For - do 33
 3.8 Exit 34
 3.9 Subroutine Calls 34
 3.10 Comments 34
 3.11 Null Statements 35
 3.12 Example Program: THERMO . . 36
 3.13 In-line Assembly Code * . . 37

 4: SUBROUTINES 39
 4.0 Procedures 39
 4.1 Local and Global 40
 4.2 Arguments 40
 4.3 Nesting 42
 4.4 Return 42
 4.5 Functions 43
 4.6 Intrinsics 45
 4.7 Scope * 46
 4.8 Recursion * 48
 4.9 Forward Procedures * . . . 49
 4.10 Forward Functions * . . . 49
 4.11 Include * 49

 5: ARRAYS * 51
 5.0 Example Program: DICE . . . 52
 5.1 How arrays work * 53
 5.2 Strings * 54
 5.3 Multidimensional Arrays * . 56
 5.4 Complex Data Structures * . 57
 5.5 Constant Arrays * 60
 5.6 Example Program: RECORDS * . 62
 5.7 Address Operator * 64
 5.8 Returning Multiple Values * . 65

 6: INPUT AND OUTPUT 67
 6.0 Device 0 68
 6.1 Device 1 69
 6.2 Device 2 70
 6.3 Device 3 70
 6.4 Device 4 73
 6.5 Device 5 73
 6.6 Device 6 73
 6.7 Device 7 74
 6.8 Device 8 74

 APPENDIX 76
 A.0 Intrinsics 76
 A.1 Compile Errors 105
 A.2 Run-time Errors 110
 A.3 Common Errors 111
 A.4 Keyboard Scan Codes . . . 113
 A.5 Syntax Summary 114

 SYNTAX DIAGRAMS
 INDEX

 * Advanced section

 0 : I N T R O D U C T I O N

 Welcome to XPL0!

 XPL0 is essentially a cross between Pascal and C. It looks somewhat like
 Pascal but works more like C. It was originally created in 1976 by Peter
 J. R. Boyle, who designed it to run on a 6502 microcomputer as an
 alternative to BASIC, which was the dominant language for personal
 computers at the time. XPL0 is based on PL/0, an example compiler in the
 book "Algorithms + Data Structures = Programs" by Niklaus Wirth.

 Since those early years, XPL0 has been steadily improved and ported to
 many different computers (6502, PDP-10, IBM-360, homebrews, 8080, 6800,
 65802, 680x0, PICs, 80x86 and ARM). There is a Windows-compatible version
 called EXPL. This manual describes the version that runs on a Raspberry
 Pi under Raspbian Linux.

 Programs written in XPL0 include: compilers, operating systems, word
 processors, video games, and controllers for embedded systems such as
 medical instruments, astronomical telescopes, and banking machines. These
 programs might have been written in assembly language, but because they
 were written in XPL0 they were written quickly, and they are easy to
 maintain.

 This manual is both a tutorial and a reference. The information is in a
 logical order for reference. However, in some cases this makes it more
 difficult when first learning the language. It's best to skip the
 sections marked "Advanced" when reading the manual for the first time.

 Readers familiar with XPL0 or other programming languages may want to
 skip to the back. The Syntax Summary and Syntax Diagrams offer a quick
 way to learn the details of XPL0.

 0.0 EXAMPLE PROGRAM: GUESS

 A good way to learn a language is to simply jump in and get your feet
 wet. So let's write a small program in XPL0. We begin by describing the
 task in plain English.

 2 0: INTRODUCTION

 This program is a guessing game where the computer thinks of a number
 between 1 and 100, and we try to guess it. After each guess, the program
 tells us whether we are high or low. The program goes through these
 steps:

 1. Think of a number between 1 and 100.
 2. Get a guess from the keyboard.
 3. Test the guess against the number.
 4. Repeat steps 2 and 3 until the guess is the number.

 Here are the same steps translated into XPL0:

 begin
 MakeNumber;
 repeat InputGuess;
 TestGuess
 until Guess = Number
 end

 Note that the program is almost word for word the same as the description
 of the task. First we "make a number" then we repeatedly "input a guess"
 and "test the guess" until it is the number.

 There needs to be more to this program since it doesn't tell how to make
 a number, input a guess, or test the guess. Each of these operations is a
 subroutine to the main program. In XPL0 these subroutines are called
 procedures. We are now going to write each of these procedures.

 procedure MakeNumber;
 begin
 Number:= Ran(100) + 1
 end

 This procedure generates a random number between 1 and 100 and puts that
 number into the variable called "Number".

 procedure InputGuess;
 begin
 Text(0, "Input guess: ");
 Guess:= IntIn(0)
 end

 This procedure displays the message: "Input guess: " on the monitor
 screen (output device 0) and gets a number (INTeger IN) from the keyboard
 (input device 0). In XPL0 several different input and output devices can
 be called from the program. This enables direct access to the monitor,
 keyboard, printer, storage files, and so forth.

 0: INTRODUCTION 3

 procedure TestGuess;
 begin
 if Guess = Number then Text(0, "Correct!")
 else
 if Guess > Number then Text(0, "Too high")
 else Text(0, "Too low");
 CrLf(0)
 end

 This procedure is more complicated but still easy to understand. If the
 computer's number is equal to the guess then we execute one statement; if
 it's not equal then we execute another statement. If the numbers are
 equal, we tell the user that the guess is correct; if they are not equal,
 we test if the guess is high or low and tell the user. CrLf(0) starts a
 new line on the screen (Carriage Return and LineFeed).

 Here is the complete program:

 integer Guess, Number;

 procedure MakeNumber;
 begin
 Number:= Ran(100) + 1
 end;

 procedure InputGuess;
 begin
 Text(0, "Input guess: ");
 Guess:= IntIn(0)
 end;

 procedure TestGuess;
 begin
 if Guess = Number then Text(0, "Correct!")
 else
 if Guess > Number then Text(0, "Too high")
 else Text(0, "Too low");
 CrLf(0)
 end;

 begin
 MakeNumber;
 repeat InputGuess;
 TestGuess
 until Guess = Number
 end

 The command word "integer" declares a name and allocates memory space for
 each variable that follows it.

 4 0: INTRODUCTION

 Note that the main procedure is the last block in the program. An XPL0
 program is read starting at the bottom to get the main flow and working
 upward to get the details in the procedures.

 Here is an example of what this program does when it runs:

 Input guess: 50
 Too high
 Input guess: 25
 Too high
 Input guess: 9
 Too low
 Input guess: 18
 Correct!

 0.1 COMPILING AND RUNNING

 After you create a program using a text editor, you compile, assemble,
 and link it to produce an executable file. For example, to run the
 number guessing program, guess.xpl, type the following:

 x guess
 guess

 "x" is a script file (in /bin) that does these steps:

 1. Runs the compiler (xplr) to convert the .xpl source to a .s file.

 2. Runs gcc to assemble the .s file to produce an executable file.

 You can make your programs run faster by using the optimizing compiler,
 xpl0. To do this substitute xx for x.

 0.2 SYNTAX

 A program consists of a bunch of characters. The rules that organize
 these characters into meaningful patterns are called the syntax of a
 language. Beginning from the most detailed level, the syntax of XPL0 is
 broken down as follows:

 Factors
 Expressions
 Statements
 Blocks
 Subroutines

 0: INTRODUCTION 5

 A factor is the smallest part of a program that can have a numeric value.
 A factor is usually a constant or a variable. Constants are numbers such
 as 100, 5280, and 3.14. Variables are places to store numbers. They are
 given names by the programmer such as "Number", "Percent", and "FEET".

 Factors are combined using operators to form expressions. An operator is
 usually one of the familiar arithmetic operators such as add, subtract,
 multiply, or divide. An expression calculates to a single value. Here are
 some examples of expressions:

 Percent - 10
 12.0 * FEET
 (Frog + 20.5) / 0.23

 A statement is a request to do something. A typical statement combines
 expressions and commands. Here are two statements:

 Number:= Ran(100) + 1;
 if Guess = Number then Text(0, "Correct!")

 Several statements can be combined into a single statement called a
 block. A block must start with a "begin" and terminate with an "end" (or
 use brackets []). Statements within a block must be separated by a
 semicolon (;). Here is an example of a block:

 begin
 Number:= 52 + 6;
 InputGuess;
 if Guess > Number then Text(0, "Too high");
 CrLf(0)
 end

 XPL0 is very flexible in the way it allows statements and blocks to be
 combined. For example, blocks can be placed inside statements:

 if Guess < Number then
 begin
 Text(0, "Too low");
 InputGuess;
 if Guess < Number then Text(0, "Still too low")
 end

 Here we have an "if" statement containing a block. The block itself
 consists of three statements separated by semicolons.

 6 0: INTRODUCTION

 Subroutines are the highest level of organization. In XPL0 there are
 several different types of subroutines; the most common is the procedure.
 A procedure is a block of statements that does a specific job. A program
 can contain any number of procedures. Procedures are given names and
 called as subroutines from other parts of the program. Here is an example
 of a procedure:

 procedure InputGuess;
 begin
 Text(0, "Input guess: ");
 Guess:= IntIn(0)
 end

 This provides a quick idea of what XPL0 is about. In the next sections we
 will examine each of these levels of syntactic organization in detail.

 ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÂÄÄÄÂÄÄÄÄÄÄÄÄÄÄÄÂÄÄÄ¿
 ³ ³ ³ ³ ³
 ÃÄÄÄÄÄÄÄÄÄÄÄÂÄÄÄÄÄÄÄÙ ÃÄÄÄ¿ ÚÄÄÄÙ ³
 ³ ³ ³ ³ ³ ³
 ³ ÚÄÄÄÄÄÄÄÁÄÄÄ¿ ÚÄÄÄÙ ³ ³ ÚÄÄÄ´
 ³ ³ ³ ³ ³ ³ ³ ³
 ³ ³ ÚÄÄÄ¿ ÃÄÄÄ´ ÃÄÄÄ´ ³ ³
 ³ ³ ³ ³ ³ ³ ³ ³ ³ ³
 ÃÄÄÄÁÄÄÄÙ ÃÄÄÄ´ ÀÄÄÄÂÄÄÄÙ ÀÄÄÄ´ ³
 ³ ³ ³ ³ ³ ³
 ³ ÚÄÄÄÄÄÄÄÙ ÀÄÄÄ¿ ÀÄÄÄ¿ ÚÄÄÄÙ ³
 ³ ³ ³ ³ ³ ³
 ÀÄÄÄÁÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÁÄÄÄÄÄÄÄÁÄÄÄÁÄÄÄÄÄÄÄÙ

 7

 1 : F A C T O R S

 A factor is the smallest part of a program that has a value. Most factors
 in XPL0 are either constants or variables. A constant is a value that
 remains unchanged throughout the execution of a program, whereas a
 variable is a value that can be changed. Factors are classified as
 integer or real. An integer is a 32-bit value that represents a whole
 number. A real number is a floating-point value that's not limited to a
 whole number and can cover a very large range of values. There are
 basically four kinds of factors: integer constants, real constants,
 integer variables, and real variables.

 1.0 INTEGER CONSTANTS

 In XPL0 an integer constant is a whole number in the range -2147483648
 through 2147483647. Here are some examples:

 10 0
 -10000 1975

 1.1 HEX AND BINARY CONSTANTS

 Integers can also be written in hexadecimal form. A hex number is an
 integer in base 16. Hex numbers are indicated by a dollar sign ($). They
 range from $00000000 through $FFFFFFFF. Hex is very useful when
 programming at the machine level. Here are some examples:

 $123 $1e0
 $FFC0 $00fff

 Note that both upper and lower case letters (A-F and a-f) can be used.

 Sometimes it's more convenient to use binary instead of hex. Binary
 numbers are indicated by a percent sign (%). For example, %10011100 is
 the same value as $9C.

 Because binary numbers can blur into meaningless strings of 1's and 0's,
 underlines can be used to visually break them up, for example, %1001_1100
 = $9C. In fact underlines can be inserted into any number, such as
 $12_34 and -10_000. The underlines are simply ignored by the compilers.

 8 1: FACTORS

 1.2 ASCII CONSTANTS

 ASCII characters are often used as constants. A caret (^) converts a
 character to its ASCII value. For example:

 ^A = $41 = 65
 ^z = $7A = 122
 ^$ = $24 = 36
 ^^ = $5E = 94

 1.3 REAL CONSTANTS

 Real constants are distinguished from integer constants by having either
 a decimal point or an exponent. The exponent is indicated by an "E". For
 instance, "3E14" means 3 times 10 raised to the 14th power, or 3 followed
 by 14 zeros. The following are examples of real constants:

 2.5 .2
 -1000000. 05.e-1
 1E6 -0.00000000000000707
 6.63E-34 6.023e+023

 In XPL0 a real number represents values ranging between ñ2.23E-308 and
 ñ1.79E+308 with 16 decimal digits (53 bits) of precision.

 Expressions containing reals execute slower than corresponding expres-
 sions containing integers. Also, a real number requires twice as much
 memory as an integer. Thus when an integer is sufficient, it's preferred
 to a real.

 1.4 VARIABLES

 Variables are temporary storage places for values. These storage places
 are given names by the programmer that can be single letters or whole
 words. Usually names are chosen to describe what the variable contains.
 For example, if you were calculating interest rates, the interest could
 be stored in a variable called "Interest". Since XPL0 is a compiled
 language, long names don't slow execution speed or take up extra memory
 space at run time (unlike an interpreted language like BASIC or Python).

 Variable names contain letters (A-Z, a-z), numbers (0-9), and underlines
 (_), but the first character must be an uppercase letter or an underline.
 Here are some examples:

 X RATE12 _drawLine
 Guess I_AM_A_NAME IAmAName

 1: FACTORS 9

 Names can be as long as you want, but only the first 16 characters are
 recognized by the compiler. Upper and lower case letters are equivalent.
 For example, the following all refer to the same name:

 Guess GUESS GueSS

 1.5 DECLARATIONS

 Before a variable can be used, it must be declared. The integer variable
 declaration has the general form:

 integer NAME, NAME, ... NAME;

 For example:

 integer Guess, Number, Frog;

 This declaration tells the compiler that the variables Guess, Number, and
 Frog can be used later in the program.

 The word "integer" is a command word. Command words are words that have
 special meaning to the compiler. They are in lowercase letters. This, for
 instance, allows you to use the word "Integer" as a variable name.

 Since the compiler looks at only the first three characters of a command
 word, they can be abbreviated. For example, these are equivalent:

 integer int

 Variables that contain real numbers are declared like the way integers
 are declared:

 real NAME, NAME, ... NAME;

 In XPL0 all named things, such as variables, procedures, and intrinsics,
 must be declared before they can be used. The rules for creating variable
 names, such as starting with a capital letter, apply to all names.

 1.6 DECLARED CONSTANTS (Advanced)

 Names can also be declared for constants. Constants are different from
 variables because once they are defined they cannot be changed. Using a

 10 1: FACTORS

 constant is more efficient than using a variable. Giving names to numbers
 can add clarity to a program. For instance, the name "Highest" might be
 more meaningful than the number 29028.

 Declared constants have the form:

 define NAME = CONSTANT, ... NAME = CONSTANT;

 For example:

 define Summit = 14210, Highest = 29028, Median = 13489.72;

 In this example Summit and Highest are integer constants, and Median is a
 real constant.

 Any constant can be used in a "define", for example:

 define A = $41, B = 66, C = -^C, LETTER = B, Number= -3.1E-3;

 Note that B, once it's defined, can be used to define other constants.
 Also note that a constant can be signed (- or +).

 Sometimes it's useful to have distinct names for things, but the actual
 value is irrelevant. In fact sometimes we don't want to know the value
 so that we cannot come to depend on it. For example, we might be working
 with a set of colors that we just want to distinguish by name. If we come
 to depend on the particular numerical value of a color, later changes in
 the program might be difficult. XPL0 has a simple scheme for defining
 sets of things:

 define Red, Green, Blue;

 Here, all you need to know is that these constants have distinct values.

 The values actually assigned by the compiler are integers beginning with
 zero and incrementing up to the last item in the set. In the example, Red
 equals 0, Green equals 1, and Blue equals 2. This process is called
 "enumerating".

 If an integer value is specified then any following items progress from
 its value. For example, this assigns numbers commonly used for months:

 define Jan=1,Feb,Mar,Apr,May,Jun,Jul,Aug,Sep,Oct,Nov,Dec;

 1: FACTORS 11

 1.7 EXAMPLE PROGRAM

 This program shows some relationships between the various types of
 integer factors.

 integer Counter;
 define Tab=$09;

 begin
 Counter:= $41;
 repeat ChOut(0, Counter);
 ChOut(0, Tab);
 IntOut(0, Counter);
 CrLf(0);
 Counter:= Counter + 1
 until Counter = ^G;
 Text(0, "That's all folks!"); CrLf(0)
 end

 When run, this program displays:

 A 65
 B 66
 C 67
 D 68
 E 69
 F 70
 That's all folks!

 The program begins by declaring the things that are needed to run it. The
 first line declares a variable called "Counter" that will hold integer
 values. The next declaration tells us that the word "Tab" can be used as
 a direct replacement for the hex number $09. This replacement is
 convenient because the ASCII value of the tab character is equal to $09.
 These two lines of declarations can be in any order.

 The rest of the program describes the actions it performs when it runs.
 Since this executable part of the program is a block consisting of
 several statements, it's enclosed within a begin-end pair.

 The first statement in the program block puts the value $41 in the
 variable called Counter. $41 is the value of the ASCII character A.

 Next it repeatedly executes a sub-block until Counter contains a value
 equal to the ASCII character G.

 12 1: FACTORS

 The sub-block begins by calling the intrinsic subroutine ChOut, to which
 we send 0 and the value in Counter (initially $41). ChOut (CHaracter OUT)
 sends a value to a specified output device. Here we are specifying device
 number 0, which is the monitor screen. When the screen driver receives a
 value, it displays the ASCII character that corresponds to the value. So
 the first time we call ChOut, an "A" is displayed.

 The next line calls ChOut again and sends the ASCII value for a tab
 character. This moves over to the next tab stop on the screen.

 Now it calls IntOut. IntOut (INTeger OUT) is similar to ChOut, but rather
 than the value being displayed as a character, it's displayed as a
 decimal integer. The first time IntOut is called, "65" (= $41) is
 displayed.

 The next statement, CrLf(0) (Carriage Return LineFeed), is an intrinsic
 that moves to the beginning of a new line on the screen.

 Next, a 1 is added to the value in Counter, and the result is stored back
 into Counter. On the next line we test the value in Counter to see if
 it's equal to the value of ASCII G. If it's not then the program goes
 back to the beginning of the repeat block and repeats the statements
 starting with ChOut. If Counter has incremented up to G then our program
 falls through to the next line, which is the Text statement.

 Text is an intrinsic similar to ChOut, but it sends out a whole string of
 characters rather than just one.

 Notice the overall logic of the program. It started at A and counted up
 to G. For each count it displayed the character and its decimal value.
 When it got to G, it broke the repeat loop and displayed the message
 "That's all folks!"

 1.8 FREE FORMAT

 In the examples shown so far, a certain formatting has been implied.
 Statements, for instance, have been written one to a line. XPL0 is a
 free-format language, which means that the compiler ignores formatting
 characters such as spaces, tabs, carriage returns, and form feeds. These
 characters are only used to make the structure of the program more
 apparent to the reader.

 The previous example program could be rewritten as follows without
 changing the way it compiles or runs:

 1: FACTORS 13

 integer Counter; define Tab = $09; begin Counter :=
 $41; repeat ChOut (0,Counter);ChOut(0,Tab);IntOut(0

 ,Counter) ; CrLf(0);Counter := Counter + 1 until
 Counter =^G;Text(0,"That's all folks!");CrLf(0) end

 However this hides the structure, making it more difficult to see what
 the program does.

 Formatting characters can be left out, but they cannot be used
 everywhere. Just as with normal English, words cannot be split apart. For
 example, this would cause a compile error:

 Count er:=$41;

 14

 2 : E X P R E S S I O N S

 XPL0, like many computer languages, is a mathematical language. It does
 arithmetic and other operations on numbers. Expressions consist of
 factors and operators. Operators perform on anything that has a value,
 such as constants, variables, and sub-expressions. An expression
 calculates to a single value. In XPL0 an expression can be used anywhere
 a value is used and vice versa.

 2.0 ARITHMETIC EXPRESSIONS

 The common arithmetic operations are done using familiar symbols:

 + Addition
 - Subtraction
 * Multiplication
 / Division

 An arithmetic expression is evaluated from left to right, with multipli-
 cation and division done first followed by addition and subtraction. The
 order of evaluation is important because it can affect the result.

 Sometimes it's necessary to evaluate an expression in a different order.
 The part of an expression within parentheses is evaluated first.

 Here are some examples of arithmetic expressions:

 6 + 4/2 equals 8 (6+4)/2 equals 5
 6 - 4*2 equals -2 (6-4)*2 equals 4
 6/2*3 equals 9 6/(2*3) equals 1
 6-4+2 equals 4 6-(4+2) equals 0
 3*(6-(4-1)) equals 9

 Integer division gives a quotient and a remainder. The remainder of the
 most recent division is gotten from the intrinsic "Rem". For example,
 19/5 evaluates to 3, and Rem has the remainder 4.

 Note that integer division does not work the same way as division using
 real numbers. For example, the following three expressions, which are the
 same mathematically, are not equivalent because of the way integer
 division works.

 2: EXPRESSIONS 15

 X/10 * 5
 X*5 / 10
 X * (5/10)

 For instance, if X is 15 then the first expression evaluates to 5, the
 second to 7, and the third to 0.

 Integer operations do not give an error if they overflow. Overflowing
 values wrap around. For example, if you add 2147483647 + 1, the result is
 -2147483648. This is desirable because $7FFF_FFFF + 1 = $8000_0000, and
 so forth.

 2.1 MIXED MODE

 XPL0 does not allow integer and real factors to be used directly together
 in the same expression. For instance:

 2 + 3.5

 This would cause a compile error. It should be changed to:

 2. + 3.5

 To do calculations on a mixture of reals and integers, you must convert
 the factors to a single data type using the Fix and Float intrinsics. Fix
 rounds a real to its nearest integer, and Float converts an integer to a
 real. For example, if the variable X is a real and I is an integer then
 calculations can be done as follows:

 Fix(X) + I
 X + Float(I)

 2.2 UNARY OPERATORS

 Since a constant can be negative, we could have an expression like:

 2 * -3

 Do not confuse the minus sign shown here for the minus sign used to do
 subtraction. This minus sign is called a unary operator because it
 operates only on the 3 and indicates that the 3 is negative.

 Any factor (or sub-expression) can have the unary operators "-" and "+".
 Because the "+" operator really doesn't do anything, it can always be
 left out. It's sometimes used to emphasize that a number is positive.

 16 2: EXPRESSIONS

 When unary operators are used in expressions with other operators, the
 unary operations are done first unless parentheses are used to force a
 different order of evaluation.

 Here are some expressions with unary operators:

 2 * -3 equals -6 +2 +2 equals 4
 6+ -4 equals 2 -$40/16 equals -4
 -4 - -6 equals 2 -^A + $41 equals 0
 -(4+6) equals -10 -2*-3 equals 6
 -7/3 equals -2 -7/-3 equals 2

 2.3 COMPARISONS

 It's often necessary to compare one value to another and make a decision
 based on the result. The following symbols are used to make comparisons:

 = Tests for equal values.
 # Tests for not equal values.
 < Tests if the first value is less than the second.
 > Tests if the first value is greater than the second.
 >= Tests if the first value is greater than or equal
 to the second.
 <= Tests if the first value is less than or equal to
 the second.

 Here are some expressions containing comparison operators:

 X = 3
 A < 0.91
 (X+1) >= Y

 We have already seen an example of how comparisons are used to make
 decisions. In the number guessing program, one of two statements was
 executed depending on a comparison:

 if Guess > Number then Text(0, "Too high")
 else Text(0, "Too low")

 If the Guess was greater than the Number then it was "Too high";
 otherwise it was "Too low".

 A comparison evaluates to true or false. These expressions evaluate to
 true:

 2: EXPRESSIONS 17

 55 > 23
 (3*4) # (3+4)

 And these expressions evaluate to false:

 (2+2) = 5
 -33.3 > -4.5

 WARNING: Since XPL0 treats all 32-bit integers as signed,

 $F000_0000 > $A000_0000 is true, but
 $F000_0000 > $7000_0000 is false.

 Converting the hex to decimal makes the reason apparent:

 -268_435_456 > -1_610_612_736 is true, and
 -268_435_456 > 1_879_048_192 is false.

 2.4 TRUE and FALSE (Advanced)

 When a comparison is made, it produces a true or false value, like 2 + 3
 produces the value 5. The reserved word "false" is just another way to
 represent the integer 0, and likewise "true" is equal to -1 (=$FFFFFFFF).

 Using these concepts and adding the new variable High, the previous
 example from the GUESS program can be rewritten as:

 High:= Guess > Number;
 if High = true then Text(0, "Too high")
 else Text(0, "Too low")

 Going one step further, since High is assigned either true or false and
 since:

 true = true is true

 and:

 false = true is false,

 the "if" statement can be simplified to:

 if High then Text(0, "Too high")
 else Text(0, "Too low")

 18 2: EXPRESSIONS

 2.5 BOOLEAN EXPRESSIONS (Advanced)

 A boolean is a value that has two states: true or false. In XPL0 integers
 are used to represent booleans. Boolean expressions are formed by com-
 bining booleans with boolean operators.

 XPL0 has four boolean operators: "not", "and", "or", and "exclusive or".
 The following symbols and words perform these operations:

 ~ not
 & and
 ! or
 | xor

 The "not" operator operates on a single value--it's another unary
 operator like the minus sign. It simply changes the value to its
 opposite. For instance, "not true" evaluates to "false". The "and"
 operator requires two values. If either value is false then the result is
 false. If both are true then the result is true. The "or" operator also
 requires two values. If both values are false then the result is false.
 If either value is true then the result is true. The exclusive or
 operator "xor" requires two values. If both values are the same then the
 result is false. If the values are different, the result is true. Here
 are some examples:

 if Pig = ~true then Text(0, "Still ok");
 if Guess<20 & Number>70 then Text(0, "Way too low");
 if Pig ! Bombed then Text(0, "Blew it!")

 Boolean operators actually use all 32 bits of an integer. Here are some
 examples, showing 4-bit values for simplicity:

 ~ 1100 1100 1100 1100
 = 0011 & 1010 ! 1010 | 1010
 = 1000 = 1110 = 0110

 Boolean operations set and clear specific bits. A frequent operation is
 masking, which uses the "and" operator to clear all bits except those
 of interest. For example, Number & 1 would reveal if Number is even or
 odd by masking off all but the least significant bit.

 The value "true" is not limited to just $FFFFFFFF, but is defined as any
 non-zero value. Thus "anding" an odd number with 1 is 1, which is "true".
 However, be careful when using values other than $FFFFFFFF for "true".
 There are instances when the "not" of a true value is not false. For
 example, ~$33 is $FFFFFFCC, both of which are non-zero, and thus both are
 "true".

 2: EXPRESSIONS 19

 Expressions can contain boolean operations, comparisons, and mathematical
 operations. In mixed expressions, arithmetic operations are done first,
 then comparisons, then boolean "not", then "and", then "or" and "xor".
 Thus the following expressions are the same:

 (A = 1) & (B = 2) is the same as A=1 & B=2
 (X & Y) ! Z is the same as X&Y ! Z

 But these are different:

 (A & $80) = 0 is different than A & $80=0
 ~(X ! Y) is different than ~X ! Y

 A common mistake is to forget to use parenthesis when masking an expres-
 sion such as this:

 Number & 7 = 3 is different than (Number & 7) = 3

 Boolean operations cannot be done on real numbers. For example, this
 would give a compile error:

 Frog & 3.2

 However, the following example is legal because the comparisons are done
 first, which produce true or false values for the "and" operator:

 Frog<3.2 & Toad>=6.3E3

 Here are some more expressions using boolean operators:

 true & false equals false
 $A ! 1 equals $B
 false & false ! true equals true
 false & (false ! true) equals false
 ~$55AA & $F0F0 equals $0000A050
 ~($F0F ! $33) equals $FFFFF0C0
 3+1 = 4 equals true
 3=4 & true equals false
 (1 ! $80) = $81 equals true (or $FFFFFFFF)
 1 ! $80 = $81 equals 1 (or true)
 4+1=6-1 & not 10>12 equals true
 17/3=5 & Rem(0)=2 equals true
 (A&~B ! ~A&B) = (A|B) equals true

 20 2: EXPRESSIONS

 2.6 SHORT-CIRCUIT BOOLEANS (Advanced)

 Some boolean expressions can be executed faster using short-circuit
 evaluation. It's used in conditional statements to bypass the rest of a
 boolean expression when the result is already known. For example:

 if A=3 ! B=5 ! C=7 ! D=11 then Prime:= true;

 In this expression if B is equal to 5 then there's no reason to compare C
 to 7 and D to 11 because Prime will be assigned the value "true" despite
 these additional comparisons.

 Short-circuit evaluation is enabled with the -b command-line switch in
 the optimizing compiler (xpl0). The xx script enables it by default. The
 reason a switch is used rather than doing short-circuit evaluation
 automatically is that it can cause errors, although they're very
 unlikely.

 An error can occur if a term in the boolean expression contains a
 function call that does more than simply return a value. Such a function
 is said to have a "side effect", and it's generally considered to be a
 bad programming practice. Here is an example:

 if P<10 & P/3=N then DoSomething;
 R:= Rem(0);

 Rem(0) is not defined when P is >= 10 and short-circuit evaluation is
 enabled. The divide operation not only returns the quotient but also sets
 the remainder as a side effect.

 Another reason for not automatically using short-circuit evaluation is
 that some old programs might give a compile error unless a small
 modification is made. For instance, the statement: "while A | B do..."
 gives the new compile error 75: EXPRESSION MUST BE ENCLOSED IN
 PARENTHESES. Adding parentheses solves the problem: "while (A | B) do..."
 This problem only occurs with the exclusive-or operator and the "if"
 expression, and these are rarely used in the boolean expression of a
 conditional statement. For example: while (if A=1 then F1 else F2) do....

 Since expressions are evaluated from left to right, it's faster to test
 for more probable conditions on the left side, for example:

 if Ch>=^0 & Ch<=^9 ! Ch>=^A & Ch<=^F then DoHex;

 (Assuming equal probability of all characters, it's faster to test the
 ten-digit range before the six-digit range.)

 2: EPXRESSIONS 21

 It's also more efficient to do comparisons before testing flags. For
 example, this takes advantage of short-circuit evaluation:

 if Printer=Epson & Pin9 then ...

 while this does not:

 if Pin9 & Printer=Epson then ...

 Avoid using unnecessary parentheses because expressions enclosed in
 parentheses are not short-circuit evaluated.

 Beware of statements like this:

 if I>=0 & A(I)=3 then ...

 If I is negative and short-circuit evaluation is not used (which is
 always the case with the non-optimizing compiler) then a segmentation
 fault will probably occur because a location way outside the range of
 array A gets accessed. The problem can be avoided by rewriting the
 statement like this (which does the same thing as short-circuit
 evaluation):

 if I>=0 then if A(0)=3 then ...

 2.7 EXAMPLE PROGRAM: SETS (Advanced)

 This program shows how boolean operators are used to operate on sets.
 A single integer can represent a set containing up to 32 elements. The
 elements are either present or absent, as indicated by set or cleared
 bits (1 or 0).

 The elements that are common to two or more sets are determined by
 "anding" the sets using the boolean "&" operator. These common elements
 are called the "intersection" of the sets. Similarly, the "union" of the
 sets is determined by the "!" operator.

 22 2: EXPRESSIONS

 \sets.xpl
 int Week, Work, Free; \Sets of days
 int Day;
 def \Day\ Mon=1, Tue=2, Wed=4, Thr=8, Fri=$10, Sat=$20, Sun=$40;
 \Assign days of the week to the individual bits of an integer

 proc Show(SET); \Graphically show the set of days
 int Set, Day;
 begin
 Day:= Mon;
 while Day & Week do \For all days of the week do...
 begin
 if Day & SET then ChOut(0, ^X) else ChOut(0, ^-);
 Day:= Day * 2; \Next day--shift bit left
 end;
 CrLf(0);
 end; \Show

 begin \Main
 \Initialize work days and free days to empty sets
 Work:= 0; Free:= 0;
 \There are 7 days in a week, so set the first 7 bits
 Week:= $7F;
 \Saturday and Sunday are free days
 Day:= Sat;
 Free:= Day ! Free ! Sun; Show(Free);
 \The rest of the week are work days
 Work:= Week & ~Free; Show(Work);
 \Free is a subset of Week
 if (Free & Week) = Free then ChOut(0, ^O);
 \Week is a superset of Work
 if (Week & Work) = Work then ChOut(0, ^K);
 \Work and Free are mutually exclusive
 if ~(Work & Free) then Text(0, " PETER?");
 \We won't work on Sunday!
 if Sun & Work then Text(0, " FORGET IT!");
 CrLf(0);
 end; \Main

 This program produces the following output:

 -----XX
 XXXXX--
 OK PETER?

 2: EXPRESSIONS 23

 2.8 SHIFT OPERATORS (Advanced)

 If you're familiar with assembly language then you'll recognize the shift
 operation. The general form of the shift expression is:

 EXPR << EXPR or EXPR >> EXPR or EXPR ->> EXPR

 EXPR is an integer sub-expression--a 32-bit value. "<<" means shift to
 the left, and ">>" means shift to the right. The value of the first
 sub-expression is shifted the number of bits specified by the second
 sub-expression. The value of the second sub-expression should range from
 0 through 31. Values outside this range can give unexpected results.

 Multiplying and dividing by powers of two is similar to shifting. Shift
 operations are faster than multiplying and much faster than dividing.
 However, note that dividing a negative number gives a negative result,
 which is not the same as shifting the negative number to the right.

 "->>" means shift arithmetic right. Unlike the first two shift operators
 listed above that shift in zeros to fill the empty bit locations, an
 arithmetic shift right fills the empty locations with whatever the most
 significant bit contains. If the expression on the left side is positive
 then zeros are shifted in, just like the >> operator; but if the
 expression is negative then ones are shifted in. This preserves the sign
 bit, and it's the same as dividing by powers of two (except that negative
 values are truncated toward minus infinity rather than toward zero).

 Here are some examples:

 1 << 1 = 2
 1 << 0 = 1
 $30 << 2 = $000000C0
 $50 >> 4 = $00000005
 $FFFFFF5A >> 4 = $0FFFFFF5
 $FF5A ->> 4 = $0000FFF5
 $FFFFFF5A ->> 4 = $FFFFFFF5

 The shift operator's precedence (priority) is between the unary operators
 and the multiplication and division operators. The following expressions
 demonstrate this:

 -1>>8 * 2 = (-1 >> 8) * 2 = $000001FE
 2 + 1<<4 = 2 + (1 << 4) = $00000012

 24 2: EXPRESSIONS

 2.9 IF EXPRESSION (Advanced)

 Sometimes, rather than calculate a value, we simply want to choose
 between two values. This can be done using an "if" expression. Do not
 confuse "if" expressions with the much more common "if" statements that
 are described later.

 The general form of an "if" expression is:

 if BOOLEAN EXPRESSION then EXPRESSION else EXPRESSION

 For example:

 if Guess > Number then 75 else 20+5

 The "if" expression evaluates to either 75 or 25 depending on the outcome
 of the comparison. If the comparison is true, that is, if Guess is
 greater than Number then the entire expression is 75; otherwise it's 25.

 Like all expressions, an "if" expression can be used anywhere a value is
 used. For instance:

 Text(0, if Guess = Number then "Correct!" else "Incorrect")

 2.10 CONSTANT EXPRESSIONS (Advanced)

 An expression that consists entirely of constants can be used in place of
 any constant such as in a "define" declaration (or constant array). The
 compiler calculates the required constant. For example:

 def SEC_PER_HR = 60.0 * 60.0;
 def SEC_PER_DAY = SEC_PER_HR * 24.0;
 def HI = ^I<<8 ! ^H;
 def Pi = 22./7., Dia = fix(25000./Pi);

 All expression operators can be used. However, function calls, such as
 Fix and Float cannot be used because they are evaluated at run-time
 rather than compile-time. In this situation you can instead use the
 command words "fix" and "float". Note the lowercase. The last example
 above rounds the diameter of the Earth to an integer 7955 miles.

 2: EXPRESSIONS 25

 2.11 CONDITIONAL COMPILE (Advanced)

 The command word "condition" is used to conditionally compile sections of
 code. "Condition" must be followed by an expression that evaluates to
 true or false. If this expression is false then any following code is
 treated as a comment. This commented-out code must be terminated by a
 second "condition" that evaluates to true. "Condition" works everywhere
 except inside comments and strings. It can be used to change declarations
 as well as executable code. For example:

 def Debug = true;

 condition Debug;
 int X;
 condition not Debug;
 real X;
 condition true;

 begin
 cond not Debug;
 X:= 3.0;
 cond Debug;
 X:= 3;
 cond true;
 . . .

 "Condition" is intended for commenting out code--not for comments in
 general. Even though the condition is false, the code that follows is not
 completely ignored. The compiler is scanning for a lowercase word that
 starts "con". Also, some minimal syntax checking is done. For instance,
 a dollar sign ($) must still be followed by a hex digit, otherwise an
 error is flagged.

 2.12 HAZARDS OF REAL NUMBERS (Advanced)

 Calculations with real numbers must be done carefully. Unlike integers,
 there are many instances where a real number is only an approximation of
 the desired value. For example, just as the value 1/3 cannot be exactly
 represented by a decimal number (only approximated by 0.333333333333...),
 it also cannot be exactly represented by an XPL0 real number. The
 discrepancy is called a rounding error. A real must round the true value
 to the nearest value it can represent.

 26 2: EXPRESSIONS

 Because of rounding errors an expression like:

 9.0 * (1.0 / 3.0)

 does not evaluate to exactly 3.0. The intermediate result, 0.33333333333,
 is not 1/3, and 0.3333333333333333 times 9.0 is 2.9999999999999997. Yet
 if the order of this calculation is changed, the result is exactly 3.0:

 (9.0 * 1.0) / 3.0

 These two expressions are not exactly equal. Thus the first hazard of
 real numbers is testing for equality. Usually it's only a coincidence
 if a real expression evaluates to an exact value. This problem is
 obscured because if we were to output the values of the two preceding
 expressions using the RlOut intrinsic, we would get 3.0000000000000000
 in both cases. The reason is RlOut itself rounds to compensate for slight
 rounding errors.

 The second hazard of rounding errors is that they can accumulate to cause
 big errors. For example, if an expression such as:

 3.0 * (1.0 / 3.0)

 is multiplied by itself 1000 times, the result might be something like
 1.000000000000220.

 Another hazard to be wary of is loss of accuracy caused by subtracting.
 For example, the expression

 1234567890123456. - 1234567890123454. + 1.25

 equals 3.25, but the same expression evaluated in a different order

 1234567890123456. - (1234567890123454. + 1.25)

 equals 1.0.

 The discrepancy is caused by not having more than 16 digits of accuracy.
 When 1234567890123454 is added to 1.25, the result is rounded to
 1234567890123455. This discrepancy can be seen two ways. Certainly the
 difference between 3.25 and 1.0 seems significant, but 2.25 compared to
 1234567890123456 is really quite small.

 27

 3 : S T A T E M E N T S

 Expressions, command words, and sub-statements combine to form XPL0
 statements. A statement is a request to do something.

 3.0 ASSIGNMENTS

 The most fundamental statement is the assignment. It specifies that a
 value is to be stored into a variable. Assignments have the general form:

 VARIABLE:= EXPRESSION

 An assignment uses a colon-equal symbol (:=) to distinguish between
 comparing two values for equality and storing a value into a variable.
 The ":=" symbol is pronounced "gets". For instance, the statement
 X:= 5 + 1 is read: "X gets five plus one."

 Here are some assignment statements:

 Number:= 23;
 Time:= Time + 1;
 Pig:= Fish = 0

 In the first statement, 23 is stored into the variable named "Number".
 The second statement adds 1 to whatever is contained in Time and stores
 the result back into Time. In the last statement, Pig gets the value
 "true" or "false" depending on whether Fish is a zero.

 3.1 BEGIN - END

 "Begin" and "end" are used to designate blocks of code. A block consists
 of one or more statements that are combined to form a single new state-
 ment. This statement has the form:

 begin STATEMENT; STATEMENT; ... STATEMENT end

 28 3: STATEMENTS

 Note that statements within the block are separated by semicolons.

 Each "begin" must have a matching "end". A common programming error is
 mismatched "begin-end" pairs.

 Square brackets ([]) can be used instead of "begin" and "end". For
 example, this is a block:

 [X:= 12; Y:= 5]

 3.2 IF - THEN - ELSE

 A characteristic that makes programs seem intelligent is the ability to
 select alternative courses of action. The "if" statement enables alterna-
 tives to be selected based on a condition.

 The "if" statement has two forms:

 if BOOLEAN EXPRESSION then STATEMENT
 if BOOLEAN EXPRESSION then STATEMENT else STATEMENT

 The "if" statement is used to execute statements or blocks of code
 conditionally. For example:

 if Number = Guess then Correct:= true else Correct:= false

 This statement tests to see if Number is equal to Guess. If it's equal,
 the variable Correct gets the value "true"; if it's not equal then
 Correct gets "false".

 Usually the condition is based on a comparison, but any expression that
 evaluates to true or false can be used. Here are some examples:

 if A/B+C-D = (Time+1)/45 then Pig:= true;
 if Pig then [X:= 3; Y:= 4] else [X:= 4; Y:= 3];
 if A=B & C=D then Frog:= 1 else Frog:= 0

 Two of the examples shown in this section can be simplified:

 Correct:= Number = Guess;
 Frog:= if A=B & C=D then 1 else 0

 The first simplification is an often overlooked use of boolean expres-
 sions. The second simplification uses an "if" expression instead of an
 "if" statement. Note the difference between the two uses of "if".

 3: STATEMENTS 29

 3.3 CASE - OF - OTHER (Advanced)

 Often a program must decide between more than the two alternatives
 offered by an "if" statement. Since an "if" statement can contain other
 statements, "if" statements can be nested. For example:

 if Guess = Number then Text(0, "Correct!!")
 else if Guess < Number then Text(0, "Too low")
 else if Guess > 100 then Text(0, "Way too high")
 else Text(0, "Too high")

 However, many levels of nested "if" statements can be inefficient and
 confusing, so XPL0 has the "case" statement.

 The "case" statement has two forms, the first is:

 case of
 BOOLEAN EXPRESSION: STATEMENT;
 BOOLEAN EXPRESSION: STATEMENT;
 ...
 BOOLEAN EXPRESSION: STATEMENT
 other STATEMENT

 In this form the "case" statement is like the nested "if"s shown above.
 The first expression that evaluates to true causes the corresponding
 statement to be executed. If no expression is true then the "other"
 statement is executed. Note that there is no semicolon before "other".
 The nested "if" example translates as follows:

 case of
 Guess = Number: Text(0, "Correct!!");
 Guess < Number: Text(0, "Too low");
 Guess > 100: Text(0, "Way too high")
 other Text(0, "Too high")

 The "other" cannot be left out, but it can have a null statement:

 case of
 Number = 1: DoOne;
 Number = 2: DoTwo
 other [];

 The second form of the "case" statement is used for efficiency. The
 expressions must all have a common component and must be a comparison for
 equality, like in the last example above. This form is:

 30 3: STATEMENTS

 case EXPRESSION of
 EXPRESSION: STATEMENT;
 EXPRESSION: STATEMENT;
 ...
 EXPRESSION: STATEMENT
 other STATEMENT

 The last example, in this form, looks like this:

 case Number of
 1: DoOne;
 2: DoTwo
 other [];

 Sometimes several different expressions are associated with a single
 statement. For example:

 case Number of
 1: DoOdd;
 2: DoEven;
 3: DoOdd;
 4: DoEven;
 5: DoOdd
 other [];

 Here, if Number equals 1, 3, or 5 then the subroutine DoOdd is executed;
 if Number equals 2 or 4 then DoEven is executed. The "case" allows any
 number of expressions to select a statement. The form is:

 EXPRESSION, EXPRESSION, ... EXPRESSION: STATEMENT

 So, the example above could be rewritten:

 case Number of
 1,3,5: DoOdd;
 2,4: DoEven
 other [];

 "Case" expressions must evaluate to integers. Reals cannot be used since
 it's generally a coincidence when two reals are exactly equal. However,
 a comparison containing reals, such as 2.3 > X, evaluates to true or
 false, which is an integer expression that can be used by the first
 "case-of" form.

 Note that "case" selectors are not limited to simple constants; they can
 be any integer expression.

 3: STATEMENTS 31

 3.4 WHILE - DO

 Much of the power of a computer is its ability to do repetitive tasks. In
 programming it's frequently necessary to make tasks execute over and
 over. This is called looping. XPL0 has four kinds of looping statements
 each of which repeatedly execute a block of code if certain conditions
 are met.

 The "while" statement is a conditional looping structure. As long as the
 condition is met, the following statement or block is repeatedly execu-
 ted. This statement has the form:

 while BOOLEAN EXPRESSION do STATEMENT

 For example:

 while Guess # Number do
 begin
 InputGuess;
 TestGuess
 end

 As long as the variables Guess and Number are not equal, the code within
 the begin-end block is repeated. The program tests the condition at the
 beginning of the "while" statement. If the condition is false, the block
 in the loop is ignored. If the condition is true, the block is executed
 and the code loops back to retest the condition. The condition must
 eventually become false, otherwise the loop continues forever.

 3.5 REPEAT - UNTIL

 The "repeat" statement has the form:

 repeat STATEMENT; ... STATEMENT until BOOLEAN EXPRESSION

 The "repeat" loop is similar to the "while" loop except that the
 decision to continue the loop is made after the block.

 32 3: STATEMENTS

 These flow diagrams show the difference between the "while" and "repeat"
 statements:

 WHILE REPEAT

 ³ ³
 ÚÄÄÄÄÄÄÄÄÄÄ>³ ³<ÄÄÄÄ¿
 ³ / \ ÚÄÄÄÁÄÄÄ¿ ³
 ³ ___/ \ ³ ³ ³
 ³ ³ \ / ³ BLOCK ³ ³
 ³ ³ \ / ³ ³ ³
 ³ ÚÄÄÄÁÄÄÄ¿ ³ ÀÄÄÄÂÄÄÄÙ ³
 ³ ³ ³ ³ ³ ³
 ³ ³ BLOCK ³ ³ / \ ³
 ³ ³ ³ ³ / ___³
 ³ ÀÄÄÄÂÄÄÄÙ ³ \ /
 ³ ³ ³ \ /
 ÀÄÄÄÄÄÙ ³ ³
 v v

 An example of a repeat loop is:

 repeat InputGuess;
 TestGuess
 until Guess = Number

 Note that the command words "repeat" and "until" also act as "begin" and
 "end" for the block in the loop.

 3.6 LOOP - QUIT

 The "loop" statement has the form:

 loop STATEMENT

 A "loop" command repeatedly executes the following statement or block. A
 "quit" statement is used to exit from any point (or points) within the
 loop. Usually a "quit" is used in an "if" statement so that the loop
 exits under certain conditions. For example:

 loop begin
 InputGuess;
 if Guess = Number then quit;
 TestGuess
 end

 3: STATEMENTS 33

 3.7 FOR - DO

 A "for" loop is a powerful looping statement. It counts one at a time,
 and for each count it executes a block of code. The starting and ending
 values of the count are specified, and the count is stored in a variable
 so that it can be used by the block. This statement has these forms:

 for VARIABLE:= EXPRESSION, EXPRESSION do STATEMENT
 for VARIABLE:= EXPRESSION to EXPRESSION do STATEMENT
 for VARIABLE:= EXPRESSION downto EXPRESSION do STATEMENT

 For example:

 for Guess:= 1 to 100 do TestGuess

 Guess starts with a value of 1 and steps one at a time up to and includ-
 ing 100. TestGuess is executed 100 times.

 The control variable for the loop must be an integer; it cannot be a real
 nor have a subscript. Negative loop limits are allowed. If the starting
 and ending limits are expressions, they are evaluated one time before the
 looping begins. The starting value is assigned to the control variable,
 and this variable is compared to the ending limit before each pass
 through the loop.

 There are two kinds of "for" loops: incrementing and decrementing. The
 incrementing version is perhaps the more common, and is shown in the
 example above. The word "to" can be used instead of the comma if you
 prefer.

 In an incrementing "for" loop if the control variable is greater than the
 ending limit, the loop is exited; otherwise the block in the loop is
 executed, and then the control variable is incremented. A decrementing
 loop uses the "downto" word, and checks if the control variable is less
 than the ending limit to determine whether the loop is executed or not.

 Note that an incrementing "for" loop is not executed if the limits are
 not in ascending order, as in:

 X:= -10;
 for Guess:= 1 to X do Text(0, "Way too low")

 Also note that 2147483647 cannot be used as the ending limit because
 there's not a larger signed number that can be represented with 32 bits.
 For example, writing "for I:= 1_000_000_000 to 2_147_483_647 do" causes
 an infinite loop.

 34 3: STATEMENTS

 3.8 EXIT

 Perhaps the simplest statement is "exit". It terminates the execution of
 a program at the point it's encountered. This statement is used to halt
 execution at a point other than the normal end of a program. It's not
 necessary to put "exit" at the end of a program.

 The "exit" statement can also return a code to Linux. The low byte of the
 value (0-255) of an optional expression following "exit" is returned.
 This return code can be tested in a script file with an "if" command. For
 example, the script files used to run the compilers (x and xx) use this
 feature to skip the assembly and link steps if there's a compile error.
 By convention, a returned value of 0 indicates no errors.

 3.9 SUBROUTINE CALLS

 Another simple statement is a call to a subroutine. It merely consists of
 the name of the subroutine, which can be a procedure or an intrinsic.
 (This is explained further in 4: SUBROUTINES.)

 A call can send some values, known as arguments, to the subroutine. In
 this case the call has the form:

 NAME(EXPRESSION, EXPRESSION, ... EXPRESSION)

 Here are some examples of subroutine calls:

 MakeNumber;
 CrLf(0);
 Text(0, "Too low")

 The first example is a procedure call. The second example calls the
 new-line intrinsic and passes the argument 0. The last example is an
 intrinsic call with two arguments.

 3.10 COMMENTS

 Comments are an important part of a program. Not only do they help others
 understand what a section of code does, but they often help the program-
 mer understand weeks or years later what was done. A comment can go
 almost anywhere (except in the middle of a name or inside a string). A
 comment is enclosed in backslash (\) characters; unless it's the last
 item on a line, in which case only the leading backslash is needed.

 3: STATEMENTS 35

 Since backslashes turn comments on and off, a comment cannot ordinarily
 contain a backslash. However, if two backslashes are used together (\\)
 then anything on the rest of the line is treated as a comment. This is
 useful when commenting out lines of code that contain comments. Here are
 some examples:

 begin \Move down the page
 for X:= -10 to 10 \Twenty-one times\ do CrLf(0);
 \\for X:= -10 to 10 \Twenty-one times\ do CrLf(0); debug

 3.11 NULL STATEMENTS

 The null statement does nothing. It consists of nothing, and it compiles
 into nothing. It's useful because in some circumstances we want to do
 nothing. An example of this was shown with the "other" part of a "case"
 statement. Here are some more examples:

 for I:= 1 to 1000 do []; \Kill some time
 while not Strobe do; \Wait for Strobe to be "true"
 repeat until KeyStruck \Another form of wait

 Each of these statements contains a null sub-statement.

 Null statements are frequently used as a coding convenience--a kind of
 XPL0 slang. For example, these two blocks compile into exactly the same
 code:

 begin begin
 X:= X + 1; X:= X + 1;
 Y:= Y - 1 Y:= Y - 1;
 end end

 Note that the block on the right actually contains three statements: the
 two assignments and a null statement after the second semicolon.

 This is convenient because now we can simply insert or delete statements
 by inserting or deleting lines and not worry about a semicolon on the
 previous line. Here you might think of semicolons as statement term-
 inators, but they are actually statement separators.

 Unless you understand the concept of null statements, you can become
 confused by semicolons, especially in if-then-else statements. A semi-
 colon is used to separate statements and procedures, and to terminate
 declarations.

 36 3: STATEMENTS

 3.12 EXAMPLE PROGRAM: THERMO

 The following program uses real numbers to convert degrees Fahrenheit to
 degrees Celsius.

 \thermo.xpl 01-AUG-2016
 \This program displays a table of Fahrenheit temperatures
 \ and their Celsius equivalents.

 real Fahr, \Fahrenheit temperature
 Cel; \Celsius temperature

 begin
 \Print table heading
 Text(0, "FAHRENHEIT CELSIUS");
 CrLf(0);

 Format(3, 1); \Define real-number format

 Fahr:= -40.0;
 while Fahr <= 100.0 do
 begin
 Cel:= 5.0/9.0 * (Fahr - 32.0); \Calculate Celsius
 RlOut(0, Fahr); \Print out results
 Text(0, " "); \(2 tabs)
 RlOut(0, Cel);
 CrLf(0);
 Fahr:= Fahr + 20.0; \Next step
 end;
 end;

 When THERMO executes, it displays the following:

 FAHRENHEIT CELSIUS
 -40.0 -40.0
 -20.0 -28.9
 0.0 -17.8
 20.0 -6.7
 40.0 4.4
 60.0 15.6
 80.0 26.7
 100.0 37.8

 CrLf and Text are intrinsics we have used before, but RlOut and Format
 are new. RlOut (ReaL OUT) outputs real numbers in a format specified by
 Format. Here we are specifying a format of three places (including the
 minus sign) before the decimal point and one place after it.

 3: STATEMENTS 37

 3.13 IN-LINE ASSEMBLY CODE (Advanced)

 Assembly code is normally not used in an xpl program. It adds complexity,
 and it prevents a program from running on other kinds of processors.
 However, there are instances when it's very useful.

 The command word "asm" is used to insert assembly code. Characters that
 follow are sent to the output file (.s). For example:

 asm mov r0, #102 @ comment
 asm ldr r1, Frog @ Comment
 asm add r0, r1
 asm str r0, Frog

 Assembly code must be written in lowercase characters except where an xpl
 variable or constant name is used. Those are written the usual way with
 at least the first letter capitalized. This enables the compiler to
 distinguish them from the rest of the assembly code so that it can
 substitute them with their assembly code representations. For instance,
 in the above example, "Frog" might be replaced with something like
 [r11,#4]. Capital letters may be used in comments preceded with an
 at-sign because they are ignored by the compiler (as well as the
 assembler).

 A practical application might be to replace xpl code with more efficient
 assembly code to speed up a critical loop. The following example shows an
 efficient way to reverse the order of the bytes in an integer. Note that
 several lines of assembly code can be enclosed in braces:

 asm {ldr r0, Frog @ 0x12345678
 rev r0, r0
 str r0, Frog @ 0x78563412
 }

 Another application is to call Linux system routines. For example, this
 deletes any existing file in the current directory whose name is pointed
 to by the variable OutBack (which must be a zero-terminated string). It
 then renames the file whose name is pointed to by OutFile to the name in
 OutBack.

 asm {ldr r0, OutBack @ delete file if it exists
 bl remove
 ldr r0, OutFile @ rename, for example, outfile.ext
 ldr r1, OutBack @ to outfile.bak
 bl rename
 }

 38 3: STATEMENTS

 Besides variable names, defined constants can also be used. Note that
 there is no # preceding MinusOne since it's generated automatically. Also
 note that hex numbers are represented by 0x instead of $.

 def MinusOne = -1;
 asm mov r0, #-1
 asm mov r1, MinusOne
 asm mov r2, MinusOne + 0x41

 Registers r4 to r15 should not be altered. If you must use them, use push
 and pop to preserve them.

 Line labels can be used if they are in lowercase and if they don't
 conflict with names already used. Labels such as "l" (ell) followed by a
 number don't conflict with labels generated by the compilers. If there is
 a conflict, the assembler will display an error message.

 Variables should be either local or at global level 0. Intermediate level
 variables aren't supported.

 39

 4 : S U B R O U T I N E S

 One of the most important constructs in programming is the subroutine.
 XPL0 has four different kinds of subroutines:

 Procedures
 Functions
 Intrinsics
 Externals

 4.0 PROCEDURES

 Scattered throughout most programs are certain operations that must be
 done over and over. To avoid writing the same code over and over, a
 programmer puts the common code into a single routine that is called
 whenever the operation is needed. After the common code is executed, the
 program resumes at the point following the call. Such a routine in XPL0
 is called a procedure.

 Any block of code can become a procedure simply by giving it a name. The
 process of naming a procedure is a declaration. Procedure declarations
 have the general form:

 procedure NAME(COMMENT);
 DECLARATIONS;
 STATEMENT;

 For example, here's a simple procedure:

 procedure MakeNumber;
 begin
 Number:= Ran(100) + 1;
 end;

 Once a procedure is declared, it can be executed simply by calling its
 name. For instance, here's a block that calls three procedures:

 40 4: SUBROUTINES

 begin
 MakeNumber;
 InputGuess;
 TestGuess;
 end;

 A block of code does not necessarily need to be called more than once to
 justify making it into a procedure. An important use of procedures is to
 make a program more understandable by breaking it down into smaller,
 simpler pieces. By making a piece of code into a procedure, you can name
 it according to its use, test it separately, and keep the main body of
 code uncluttered.

 4.1 LOCAL AND GLOBAL

 Names are active only in certain areas of a program. These areas are
 defined by the rules of scope (see: 4.7 Scope). A name that's declared
 within a procedure is said to be local to that procedure. A name that's
 defined for several procedures is global to those procedures.

 A procedure is an independent piece of code that can contain its own
 declarations. For example:

 integer Number;

 procedure MakeNumber;
 integer Times, X; \Local variables
 begin \Randomly pick a random number
 Times:= Ran(10);
 for X:= 0 to Times do Number:= Ran(100) + 1;
 end;

 begin
 MakeNumber;
 end;

 In this example Times and X are local names while Number, Ran, and
 MakeNumber are global names.

 4.2 ARGUMENTS

 It's often necessary to send information to a procedure. Values to be
 sent are separated by commas and placed between parentheses immediately
 after the procedure call. These values are the arguments of the proce-
 dure. When the procedure is called, these arguments are copied into the
 first local variables of the procedure. Here is an example:

 4: SUBROUTINES 41

 integer A, B, C, Result;

 procedure AddTen; \Subroutine
 integer X, Y, Z; \Arguments
 begin
 X:= X + 10;
 Y:= Y + 10;
 Z:= Z + 10;
 Result:= X + Y + Z;
 end;

 begin \Start of the program
 A:= 1;
 B:= 2;
 C:= 3;
 AddTen(A, B, C); \Procedure call with arguments
 end;

 In this example the second block calls the first. In the process it sends
 the values of the variables A, B, and C, which are 1, 2, and 3 respec-
 tively. When AddTen is called, the values in A, B, and C are copied into
 X, Y, and Z. The procedure adds 10 to each of these values, sums them
 into Result (= 36), and returns. The original A, B, and C are not changed
 by the procedure call.

 XPL0 allows a special comment to be placed after the name of a procedure
 and before the semicolon in the declaration. This helps the programmer
 keep track of which variables are arguments and which are normal locals.
 Use the comment to list the arguments in the order they are sent when the
 procedure is called.

 Here is an example of an argument list as a comment:

 procedure Check(Area, Perimeter);
 integer Area, Perimeter; \Arguments
 integer Side; \Normal local variable
 begin
 Side:= Perimeter / 4;
 if Side*Side = Area then Text(0, "square")
 else Text(0, "rectangle");
 end;

 Writing Area and Perimeter in parenthesis on the first line shows that
 this procedure has these two values passed to it as arguments, while Side
 is simply a normal local variable.

 Real values can also be passed as arguments. Be sure to declare the local
 variables in the same order as they are passed. "Real" and "integer"
 declarations can be mixed in any order to accomplish this.

 42 4: SUBROUTINES

 The ability to pass values to procedures, with the ability to declare in
 each procedure just those variables it needs, enables each procedure to
 be a complete and independent piece of code. This enables it to be de-
 bugged separately and copied from program to program.

 4.3 NESTING

 Since a procedure is an independent piece of code, it can itself contain
 procedures. Procedures can be nested inside each other. For example:

 procedure ONE;

 procedure TWO;

 procedure THREE;
 begin
 ...
 end;

 begin \TWO
 ...
 end;

 begin \ONE
 ...
 end;

 Look at how these procedures are nested. Procedure THREE is nested inside
 procedure TWO, which in turn is nested inside procedure ONE.

 Procedures can be nested up to eight levels deep. Here ONE is at the
 highest level, and THREE is at the lowest level. Note that the block for
 the highest level routine is last, but is executed first.

 The same order applies to an entire program. The code for the main
 routine is always the last block in the program, and this highest-level
 block is always executed first. In fact, a program is just one big
 procedure.

 4.4 RETURN

 Occasionally it's desirable to return from a procedure at a point other
 than its normal end. This is done using a "return" statement. "Return"
 forces a procedure to immediately return to its caller. At the end of a
 procedure, a "return" is implied and need not be written.

 4: SUBROUTINES 43

 The TestGuess procedure used in the number guessing program could be
 rewritten using a "return" statement:

 procedure TestGuess;
 begin
 if Guess = Number then [Text(0, "Correct!"); return];
 if Guess > Number then Text(0, "Too high")
 else Text(0, "Too low");
 CrLf(0);
 end;

 4.5 FUNCTIONS

 The "return" statement is also used to return a value from a subroutine
 to the calling routine. A subroutine that returns a value is called a
 "function". A function is similar to a procedure except that it returns
 a value and is used as a value. A procedure call is a statement, but a
 function call represents a value and is therefore a factor. The general
 form of a function is:

 function TYPE NAME(COMMENT);
 DECLARATIONS;
 STATEMENT;

 Since all factors must be distinguished as either integers or reals, the
 function declaration includes a type specifier. This specifier is either
 "integer", "real", or none. If the type is not specified (none), the
 function defaults to integer.

 The value to be returned by the function is placed immediately following
 the "return" command. The general form is:

 return EXPRESSION;

 Here is an example of how a function is used:

 integer X, Y;

 function integer Increment(A);
 integer A;
 begin
 return A + 1;
 end;

 begin
 X:= 3;
 Y:= Increment(X); \Function call
 end;

 44 4: SUBROUTINES

 This function increments a value. When the function is called, the value
 in X is sent to it. This value is incremented and passed back to the
 caller by the "return" statement. The result (4) is then stored into the
 variable Y.

 Here is an example of a function that returns a real value:

 real Angle;

 func real Deg(X);
 real X;
 return 57.2957795 * X;

 begin
 Angle:= Deg(3.141592654);
 end;

 This function converts radians to degrees. Angle gets 180.0.

 Here is an example of a function that returns a boolean:

 integer Ch;

 function Affirmative;
 begin
 OpenI(0);
 return ChIn(0) = ^y;
 end;

 begin
 Text(0, "Do you want to see the ASCII character set? ");
 if Affirmative then for Ch:= $20 to $7E do ChOut(0, Ch);
 end;

 This function returns "true" if the first character typed on the keyboard
 is a "y" (as in "yes"), otherwise it returns "false". The OpenI (Open
 Input) intrinsic discards any characters that might already be in the
 keyboard's buffer, thus assuring that the intended character is used.

 If a "return" is used in the main (highest-level) procedure, it has the
 same effect as an "exit" statement. If an expression follows such a
 "return", it also has the same effect as an expression following an
 "exit" statement. (See: 3.8 Exit.)

 4: SUBROUTINES 45

 4.6 INTRINSICS

 Intrinsics are built-in subroutines that do a variety of operations, such
 as input and output, and math functions. There are about a hundred
 intrinsics in the run-time code (natrpi.s).

 An intrinsic, like any named thing, must be declared before it can be
 used. This is done automatically by including the file codesr.xpl, so you
 don't need to be concerned about declaring intrinsic names unless you
 want to use a non-standard name. When an intrinsic is declared, a name is
 given to its number. The general form of an intrinsic declaration is:

 code TYPE NAME(COMMENT) = INTEGER, ... NAME(COMMENT) = INTEGER;

 Here are some examples:

 code Ran=1, Text=12;
 code real Sin(real)=56, Cos(real)=60;

 Intrinsics can be given any name, but the established names are preferred
 because they are recognizable.

 Since some intrinsics are used as functions, and since the compiler must
 distinguish between integer and real functions, an intrinsic declaration
 includes an optional type specifier. This specifier works the same way as
 for function declarations except that it defines the data type of all
 names following the declaration. In the example, Sin and Cos are trig
 functions that return real values.

 An intrinsic call is identical to a procedure or function call. Argu-
 ments, if any, are placed between parentheses immediately following the
 intrinsic name.

 Here are some examples of intrinsic calls:

 Cursor(20, 12);
 Number:= Ran(100);
 Height:= Sin(Angle) * 10.0;

 The first example sends the values 20 and 12 to the cursor positioning
 intrinsic. In the second example, a random number between 0 and 99
 (inclusive) is assigned to the variable "Number". The last example
 computes the sine of Angle, multiplies it by 10, and stores the result in
 Height.

 Some intrinsics return a value while others do not. Intrinsics that
 return a value must be used as functions (factors), not as statements,
 otherwise a compile error occurs. Conversely, an intrinsic that does not
 return a value must not be used as a function.

 46 4: SUBROUTINES

 The following is an example of the incorrect use of an intrinsic. This
 statement is illegal and will cause a compile error:

 for I:= 10 to 100 do Ran(I); \A bad statement

 The error would occur because the random-number intrinsic returns a value
 that's not used.

 See appendix A.0 for a list of the intrinsics and a description of what
 they do.

 4.7 SCOPE (Advanced)

 Scope is the feature that makes names active only in certain parts of a
 program. A name declared in one part does not necessarily conflict with
 the same name declared in another part. Scope is what makes a program
 modular.

 When a name is active, it's in scope. At any point in the program certain
 names are in scope and available, while others are out of scope and
 nonexistent. A name is in scope from the point it's declared to the end
 of the procedure in which its declaration appears. It is active in any
 sub-procedures that might be nested in the procedure. Usually we think of
 scope applying to variable names, but it applies to procedure names, as
 well as all other names.

 Here are some nested procedures with a variable declared in each one:

 procedure ONE;
 integer X;

 procedure TWO;
 integer Y;

 procedure THREE;
 integer Z;
 begin
 . . .
 end;

 begin \TWO
 . . .
 end;

 begin \ONE
 . . .
 end;

 4: SUBROUTINES 47

 Here is another way of looking at these same nested procedures:

 ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿
 ³ procedure ONE X ³
 ³ ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿ ³
 ³ ³ procedure TWO Y ³ ³
 ³ ³ ÚÄÄÄÄÄÄÄÄÄÄÄÄ¿ ³ ³
 ³ ³ ³ procedure ³ ³ ³
 ³ ³ ³ THREE Z ³ ³ ³
 ³ ³ ÀÄÄÄÄÄÄÄÄÄÄÄÄÙ ³ ³
 ³ ÀÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ ³
 ÀÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ

 The statements inside procedure ONE can call procedure TWO because both
 the call and procedure TWO are within procedure ONE. However, the state-
 ments inside procedure ONE cannot call procedure THREE because the scope
 of THREE ends at the end of procedure TWO.

 For similar reasons, only the variable X is in scope for the statements
 inside procedure ONE. Procedure TWO can access variables X and Y, and it
 can call procedures ONE, TWO, and THREE. Procedure THREE can access all
 the variables, X, Y, and Z, and can call procedures, ONE, TWO, and THREE.

 Note that a procedure is in scope during its own body code, so a
 procedure can call itself. (See: 4.8 Recursion.)

 Two procedures at the same level, but nested inside different procedures,
 cannot call each other. For example:

 ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿
 ³ procedure A ³
 ³ ÚÄÄÄÄÄÄÄÄÄÄÄ¿ ³
 ³ ³ procedure ³ ³
 ³ ³ B ³ ³
 ³ ÀÄÄÄÄÄÄÄÄÄÄÄÙ ³
 ÀÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ

 ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿
 ³ procedure ONE ³
 ³ ÚÄÄÄÄÄÄÄÄÄÄÄ¿ ³
 ³ ³ procedure ³ ³
 ³ ³ TWO ³ ³
 ³ ÀÄÄÄÄÄÄÄÄÄÄÄÙ ³
 ÀÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ

 Procedures B and TWO cannot call each other because they are not in scope
 with each other. The scope of B ends at the end of procedure A. However,
 statements in procedures ONE and TWO can call procedure A, and con-
 versely, statements in A and B can call procedure ONE. (See: 4.9 Forward
 Procedures.)

 48 4: SUBROUTINES

 In XPL0 names in scope with each other and at the same level must be
 unique in their first 16 characters, otherwise a compile error occurs
 (ERROR 11: NAME ALREADY DECLARED). However, there is no conflict if the
 identical names are declared in different scopes or in the same scope but
 in procedures nested at different levels. For example, "integer Frog" can
 be declared in all four of the procedures: A, B, ONE, and TWO, without
 conflict. Each declaration creates a separate variable, so there are four
 unique variables that have the same name.

 When the same name is declared at different levels in nested procedures,
 the most local declaration is used. In the last example suppose the
 nested procedures A and B both have "integer Frog" declared in them. When
 a statement in procedure B refers to Frog, it refers to the local Frog
 declared in B, not the global one in A. Statements in procedure A use the
 Frog declared in A. It's a good idea to avoid this kind of situation.

 4.8 RECURSION (Advanced)

 Recursion is a powerful programming technique. It's the ability of a
 routine to call itself. Recursion provides another approach to solving
 problems. Some things can be easily defined in a recursive way. For
 example, an ancestor is a person's father or mother or one of their
 ancestors. In programming, recursion is used for sorting, searching
 tree structures, parsing parenthesized expressions, and so on.

 XPL0 is designed to facilitate recursive programming. Any procedure (or
 function) can call itself. A procedure can also call itself indirectly.
 For instance, a procedure P could call a second procedure Q that calls
 the original procedure P. Each time a procedure calls itself, the current
 set of local variables for the procedure is saved and a new set is
 created.

 Here is an example using recursion to compute factorials:

 function Factorial(N); \Returns N!
 integer N;
 begin
 if N = 0 then return 1 \(0! = 1)
 else return N * Factorial(N-1);
 end;

 begin \Main
 IntOut(0, Factorial(7));
 end;

 Seven factorial (7!) is 7*6*5*4*3*2*1, which is equal to 5040.

 4: SUBROUTINES 49

 4.9 FORWARD PROCEDURES (Advanced)

 In XPL0 all names must be declared before they can be used. Procedures,
 in particular, must be declared before they are called. Occasionally a
 situation arises in recursive programs where a procedure must be called
 before it's declared. The forward-procedure declaration solves this
 problem. It has the form:

 fprocedure NAME(COMMENT), ... NAME(COMMENT);

 For example:

 fprocedure MakeNumber, TestGuess, Break, Repair;

 This declaration tells the compiler that the four names listed are
 procedures that occur within the present procedure and at the current
 level. Now that these procedures are declared, they can recursively call
 each other without regard to the order that they are written.

 4.10 FORWARD FUNCTIONS (Advanced)

 Forward declarations can also be made for functions. The form is:

 ffunction TYPE NAME(COMMENT), ... NAME(COMMENT);

 Forward-function declarations are similar to forward-procedure declar-
 ations with the exception that functions must be typed. The type is
 either "integer", "real", or none. (See: 4.5 Functions.) For example:

 ffunction real Sinh, Cosh, Tanh;

 4.11 INCLUDE (Advanced)

 Large programs can be broken into smaller, more manageable pieces in
 several ways. One way is to use the "include" command word to auto-
 matically insert another file when you compile your program. For example,
 the graphics library routines can be inserted like this:

 include /lib/graphics;

 50 4: SUBROUTINES

 Note that forward slashes specify the path name in the normal Linux
 manner, and do not indicate division in this situation. The default
 extension is .xpl, so it does not need to be written. Other extensions
 can be used. Only one file name can follow "include", and it must be
 terminated by a semicolon.

 Any number of files can be included in a program. An included file can
 itself include other files. Included files can be nested in this fashion
 up to eight levels.

 51

 5 : A R R A Y S

 It is often useful to handle variables as a group when the variables have
 something in common--like points on a graph or dollars in accounts. In
 XPL0 variables can be grouped using a single name with each item having a
 separate number. Such a group is called an array. For example:

 Account(11)

 This refers to the 12th item in the array named "Account". If there are
 20 items in an array, they are numbered 0 through 19.

 In XPL0 there are three types of arrays: integer, real, and character.

 Integer arrays are groups of variables where each variable is an
 integer. Each variable in the array can store a 4-byte value in the range
 -2147483648 through 2147483647 (or $0000_0000 through $FFFF_FFFF).

 The name of an array must be declared before it can be used. Integer
 array declarations have the general form:

 integer NAME(DIMENSIONS), ... NAME(DIMENSIONS);

 For example:

 integer Account(20);

 This sets aside memory space for 20 integers and gives this space the
 name "Account". Now, values can be moved in and out of the elements of
 this array. For example:

 begin
 Account(19):= 2050;
 I:= Account(9) + 100;
 . . .

 Array variables are normally used with an item number in parentheses.
 This number is called a "subscript", and it can be any integer expression
 as long as it evaluates to an item number that's in the array.

 52 5: ARRAYS

 Account(I+2):= J;
 if Account(0)=$0C then FormFeed;

 Arrays that contain real numbers are similar to integer arrays. Here is
 an example:

 real Dollars(70), X;
 int I;
 begin
 for I:= 0 to 70-1 do Dollars(I):= 0.00;
 Dollars(7):= 1.25;
 X:= Dollars(7) - 1.00;
 end;

 Note that subscripts are always integers, or integer expressions, even
 for a real array.

 Array elements can also be single bytes. Since a byte is often used to
 store an ASCII character, these arrays are called character arrays. Here
 are some examples:

 character Name(20), Address(20), City(10), State(2);

 5.0 EXAMPLE PROGRAM: DICE

 This little program uses an integer array to represent the six sides of a
 die. The program simulates throwing the die 10000 times and counts the
 number of times each side lands up. The sides are numbered 0 through 5 in
 the array.

 \dice.xpl ÕÍÍÍÍÍÍÍ»
 \This program simulates dice throwing ³ o o º
 integer Side(6), I, N; ³ o º
 ³ o o º
 begin ÀÄÄÄÄÄÄÄ½
 for I:= 0 to 5 do Side(I):= 0; \Initialize array with zeros
 for I:= 1 to 10000 do \Throw the die 10000 times
 begin
 N:= Ran(6); \Randomly pick a side
 Side(N):= Side(N) + 1; \Increment counter for side
 end;
 \Show the results
 for I:= 0 to 5 do [IntOut(0, Side(I)); ChOut(0, \tab\$09)];
 CrLf(0);
 end;

 5: ARRAYS 53

 Running this program produced the following output:

 1701 1715 1711 1665 1601 1607

 5.1 HOW ARRAYS WORK (Advanced)

 When an array name is declared with a dimension in parentheses, memory
 space is set aside for the items that will be in the array. Memory space
 is also set aside for the name of the array, just like space is set aside
 for any variable name. However, the array name is automatically set to
 the address in memory where the array items start. The only difference
 between an array name and an ordinary variable name is that the array
 name has a value automatically stored into it. This starting address
 points to the items in the array, and is called a "pointer".

 For example, the declaration

 integer Account(20);

 reserves memory space for 20 integers plus space for one more integer,
 the variable called Account. The variable called Account is set to point
 to the start of the space reserved for the 20 integers. Account is
 normally used with a subscript that refers to one of the items in the
 array. Account without a subscript refers to the starting address of the
 array. Here is what this array looks like:

 ÚÄÄÄÄÄÄÄÄÄÄ¿
 ³ Starting ³ ÚÄÄÄÄÄÄÄÄÄÄ¿
 ³ address ÄÅÄÄÄÄÄÄÄ> ³ Item ³
 ÀÄÄÄÄÄÄÄÄÄÄÙ ³ 0 ³
 ³ÄÄÄÄÄÄÄÄÄÄ³
 ³ Item ³
 ³ 1 ³
 ³ÄÄÄÄÄÄÄÄÄÄ³
 ³ Item ³
 ³ 2 ³
 ³ÄÄÄÄÄÄÄÄÄÄ³

 ³ÄÄÄÄÄÄÄÄÄÄ³
 ³ Item ³
 ³ 19 ³
 ÀÄÄÄÄÄÄÄÄÄÄÙ

 The starting address of an array declared as "real" is handled as a real
 variable even though it contains a 32-bit address pointing to its data.
 The address is in the first four of the eight bytes (low byte first).

 54 5: ARRAYS

 When an array is passed to a procedure, only the starting address is
 passed, not the actual items in the array. Thus an array passed to a
 procedure should never have its dimensions declared in the procedure. In
 other words, the local variable name of the array argument should never
 have parenthesis showing its size.

 Memory used for arrays, as well as variables, comes from an area known as
 the "heap". The heap is 64 megabytes that works like a stack but is a
 little more versatile. When a procedure returns, any arrays and variables
 that were declared in it are no longer needed. The heap space used by
 these arrays and variables is released so that it can be used by other
 arrays and variables in other procedures. This efficient method of using
 memory is called "dynamic memory allocation". The amount of unused space
 available in the heap can be determined by calling the Free intrinsic.

 Declared array dimensions must be constants; they cannot be variables.
 This is rarely a limitation because any constant expression can be used.
 For example:

 def Size=20;
 int Array(Size);
 char Name(Size*3);

 If a variable must be used to define the size of an array at run time, it
 can be done using the method described in: 5.4 Complex Data Structures.

 5.2 STRINGS (Advanced)

 Another way to set up a character array is to make a text string. For
 example:

 "This is a string"

 This allocates some memory space, fills it with the ASCII for each
 character, and returns the starting address. If this address is assigned
 to the character variable S then S is like any other character array
 except that the contents are already set.

 We can read the individual bytes, as in:

 character S;
 begin
 S:= "This is a string";
 if S(3)=$73 then Text(0, "It's an s");
 . . .

 5: ARRAYS 55

 Or we can store bytes into this array, as in:

 S(3):= ^n; S(5):= ^a;

 We can output the string to any device using the Text intrinsic. For
 example:

 Text(0, S);

 now displays:

 Thin as a string

 on the monitor screen (device 0).

 Note that the quoted string itself allocates the memory space; there is
 no dimension after the S in the declaration. Writing: "character S(16);"
 would allocate another 16 bytes that would not be used.

 The end of a string is marked by setting the high bit of the last
 character. This adds $80 (128) to the ASCII value of this character. In
 the example above, S(15) has the value $E7, which is $80 more than the
 ASCII for the letter g ($67).

 The method for terminating strings can be changed by using the "string"
 command. If "string 0;" is written then any strings that follow will be
 terminated with a zero byte instead of the high bit set on their last
 character. This has the advantage of making them consistent with the way
 strings passed to Linux system routines must be terminated. It also
 enables the use of the extended characters ($80-$FF), such as the line
 draw characters, in strings. Finally, it provides the possibility for a
 string that contains no characters, called a "null string".

 If you want to change the string termination back to having the high bit
 set then "string 1;" (or any non-zero integer) will do it. The Text
 intrinsic (12) works for strings that are terminated by either method.

 The caret character (^), besides indicating ASCII values (see: 1.2 ASCII
 Constants), enables quotes (") and carets to be in strings. For example:

 Text(0, "^"^^^" is called a ^"caret^"");

 displays:

 "^" is called a "caret"

 A string can contain any printable character. It can also contain control
 characters like tab, carriage return, bell, and form feed. However,
 putting a form feed in a string can mess up a program listing, and a
 control character, such as a bell ($07), won't show in the listing. Thus
 it's better to use the caret character to put a control character in a
 string.

 56 5: ARRAYS

 Inside a string, ^A means control-A, ^Z means control-Z, and so forth. Do
 not confuse this use of the caret character with the way it's used to
 represent an ASCII character outside a string. ^G in a string means
 control-G ($07, the bell character), but outside a string it means the
 letter G ($47).

 Characters in addition to A-Z can be used with the caret to get the
 complete range of control characters. The symbols ^@, ^A...^Z, ^[, ^\,
 ^], and ^_ correspond to the values $00, $01...$1A, $1B, $1C, $1D, and
 $1F. Note the exception: ^^, which is not $1E but the caret character
 ($5E) described above. Lowercase letters and characters can also be used.
 ^`, ^a...^z, ^{, ^|, ^}, and ^~ correspond to the values $00, $01...$1A,
 $1B, $1C, $1D, and $1E.

 5.3 MULTIDIMENSIONAL ARRAYS (Advanced)

 Arrays can have more than one dimension. A multidimensional array has
 multiple subscripts to select an individual element.

 A 2-dimensional array can be visualized as a grid of rows and columns
 that contain data. For example, a 3-by-5 array named "Data" would look
 like this:

 ÚÄÄÄÄÄÄÄÄÄÄÄÂÄÄÄÄÄÄÄÄÄÄÄÂÄÄÄÄÄÄÄÄÄÄÄÂÄÄÄÄÄÄÄÄÄÄÄÂÄÄÄÄÄÄÄÄÄÄÄ¿
 ³ Data(0,0) ³ Data(0,1) ³ Data(0,2) ³ Data(0,3) ³ Data(0,4) ³
 ÃÄÄÄÄÄÄÄÄÄÄÄÅÄÄÄÄÄÄÄÄÄÄÄÅÄÄÄÄÄÄÄÄÄÄÄÅÄÄÄÄÄÄÄÄÄÄÄÅÄÄÄÄÄÄÄÄÄÄÄ´
 ³ Data(1,0) ³ Data(1,1) ³ Data(1,2) ³ Data(1,3) ³ Data(1,4) ³
 ÃÄÄÄÄÄÄÄÄÄÄÄÅÄÄÄÄÄÄÄÄÄÄÄÅÄÄÄÄÄÄÄÄÄÄÄÅÄÄÄÄÄÄÄÄÄÄÄÅÄÄÄÄÄÄÄÄÄÄÄ´
 ³ Data(2,0) ³ Data(2,1) ³ Data(2,2) ³ Data(2,3) ³ Data(2,4) ³
 ÀÄÄÄÄÄÄÄÄÄÄÄÁÄÄÄÄÄÄÄÄÄÄÄÁÄÄÄÄÄÄÄÄÄÄÄÁÄÄÄÄÄÄÄÄÄÄÄÁÄÄÄÄÄÄÄÄÄÄÄÙ

 Notice that the order of the subscripts is row followed by column. The
 rows increase going down, and the columns increase going to the right.
 (You can reverse this order and think of a 3-by-5 array as having 3
 columns and 5 rows, but this is not the order used by matrices and
 constant arrays.) This kind of data structure is used for many things,
 such as board games, matrix calculations, and pixel coordinates.

 The 2-dimensional array shown above can be set up and used as follows:

 integer Data(3,5), I, J;
 begin
 for I:= 0 to 3-1 do
 for J:= 0 to 5-1 do
 Data(I,J):= 0;
 Data(1,3):= 42;
 . . .

 More dimensions can be easily added. Here is a 3-by-5-by-8 array, this
 time using a real variable:

 5: ARRAYS 57

 real Data(3,5,8);
 int I, J, K;
 begin
 for I:= 0 to 3-1 do
 for J:= 0 to 5-1 do
 for K:= 0 to 8-1 do
 Data(I,J,K):= 0.0;
 Data(1,3,7):= 42.0;
 . . .

 Character arrays can also be multidimensional. For example:

 character String(100,80);

 This reserves space for 100 strings that are each 80 bytes long. Note
 that the number of bytes is specified by the last dimension. Single bytes
 are accessed using a subscript:

 String(I,J):= ^A;
 ChOut(0, String(99,3));

 5.4 COMPLEX DATA STRUCTURES (Advanced)

 XPL0 implements arrays in a flexible way that lets you build complex data
 structures that are not limited to the uniform arrays that have been
 discussed so far.

 Each element in an integer array is a 32-bit value. This value can be an
 integer or the address of another integer array. When a 2-dimensional
 array is declared, XPL0 reserves the space and sets up pointers to the
 first and second dimensions. Here is how a 4-by-3 array works:

 integer Frog(4,3);

 ÚÄÄÄÄÄÄÄÄÄÄÄ¿ ÚÄÄÄÄÄÄÄÄÄÄÄ¿ ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿
 ³ Frog ÄÅÄÄÄ>³ Frog(0) ÄÅÄÄÄ>³ Frog(0,0) ³ Frog(0,1) ³ Frog(0,2) ³
 ÀÄÄÄÄÄÄÄÄÄÄÄÙ ³ÄÄÄÄÄÄÄÄÄÄÄ³ ÀÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ
 ³ Frog(1) ÄÅÄ¿ ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿
 ³ÄÄÄÄÄÄÄÄÄÄÄ³ ÀÄ>³ Frog(1,0) ³ Frog(1,1) ³ Frog(1,2) ³
 ³ Frog(2) ÄÅÄ¿ ÀÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ
 ³ÄÄÄÄÄÄÄÄÄÄÄ³ ³ ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿
 ³ Frog(3) ÄÅ¿ÀÄ>³ Frog(2,0) ³ Frog(2,1) ³ Frog(2,2) ³
 ÀÄÄÄÄÄÄÄÄÄÄÄÙ³ ÀÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ
 ³ ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿
 ÀÄÄ>³ Frog(3,0) ³ Frog(3,1) ³ Frog(3,2) ³
 ÀÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ

 58 5: ARRAYS

 Like the variable Frog, the elements Frog(0) through Frog(3) contain
 addresses that point to arrays. These arrays are the second dimension of
 the original array, Frog.

 Normally an element of the array Frog would be accessed like this:

 I:= Frog(1,2);

 But note that this is equivalent to these two steps:

 I:= Frog(1);
 I:= I(2);

 When XPL0 sets up a multidimensional array, it must be uniform. That is,
 the rows must all be the same length. But you can set up an array
 yourself and make it any shape you want. The above 2-dimensional array
 can be set up as follows:

 integer Frog, I;
 begin
 Frog:= Reserve(4*4);
 for I:= 0 to 4-1 do Frog(I):= Reserve(3*4);
 . . .

 The Reserve intrinsic reserves the specified number of bytes and returns
 the starting address of the reserved memory space. The first statement
 reserves 16 bytes of memory (four integers) and stores the address of
 this memory space into Frog. Thus the pointer to the first dimension is
 set. The second statement does something similar. It reserves three
 integers for each of the four elements in the first dimension of the
 array.

 You could make the first row of the second dimension larger than the
 others by adding a statement like this:

 Frog(0):= Reserve(100);

 Or you could add a third dimension to one of the elements in a row with a
 statement like this:

 Frog(1,1):= Reserve(17);

 Using the Reserve intrinsic, you can make linked lists; you can make
 trees; you can make any shape data structure you want.

 5: ARRAYS 59

 Character arrays and arrays containing real values are set up like
 integer arrays. The only difference for a character array is that the
 number of bytes is reserved in the last dimension rather than the number
 of integers (bytes * 4). For example:

 character Frog(4,3);

 is equivalent to:

 character Frog;
 int I;
 begin
 Frog:= Reserve(4*4);
 for I:= 0 to 4-1 do Frog(I):= Reserve(3);

 Setting up real arrays uses the intrinsic RlRes instead of Reserve. The
 argument for RlRes (an integer) reserves enough memory to hold a real
 number instead of a byte. A 20-element array would use RlRes(20). For
 example:

 real Frog(4,3);

 is equivalent to:

 real Frog;
 int I;
 begin
 Frog:= RlRes(4);
 for I:= 0 to 4-1 do Frog(I):= RlRes(3);

 Be careful where you put calls to Reserve and RlRes. Note that the
 Reserve in the "for" loop reserves more memory each time it's called.
 Normally reserves are made at the beginning of a procedure to set up a
 data structure used by the procedure.

 Reserved space is allocated dynamically (like any local variable or array
 space). This means that when a procedure that calls Reserve (or RlRes)
 returns, the allocated space is released so that other routines can use
 it. If the procedure is called again, the space is allocated again, but
 usually the former contents are gone.

 A common mistake is to reserve a data structure and use it outside the
 scope of the procedure that reserves it. A data structure should be
 reserved in the same procedure that declares the name of the structure.
 If the name is a global variable then the reserve must be done in the
 main procedure. Do not call an initialization procedure to reserve this
 space because the space would go away when the initialization procedure
 returns.

 60 5: ARRAYS

 5.5 CONSTANT ARRAYS (Advanced)

 Sometimes what's needed is a fixed table of values. It's possible to
 assign values to each element of an array, but a better way is to use a
 constant array. Its general form is:

 [CONSTANT, CONSTANT, ... CONSTANT]

 For example:

 integer Data;
 begin
 Data:= [2, 22, 222, 2222, 22222];
 . . .

 This array is similar to a text string. The difference is that the
 elements are 32-bit integer constants instead of 8-bit ASCII characters.
 In this example, Data(2) contains the value 222. The assignment (:=)
 stores the address of the array into Data. The elements of a constant
 array can be used just like other array elements.

 Constant arrays can contain real numbers as well as integers and have
 multiple dimensions. However, reals and integers cannot both be used in a
 single array. Here is a 2-dimensional, 3-by-5 array:

 real Data;
 begin
 Data:= [[70.0, 70.1, 70.2, 70.3, 70.4],
 [71.0, 71.1, 71.2, 71.3, 71.4],
 [72.0, 72.1, 72.2, 72.3, 72.4]];
 . . .

 Data(0,0) contains 70.0, and Data(1,4) contains 71.4. Note that the rows
 are the first dimension.

 A constant array can contain other constant arrays and text strings to
 make complex data structures. For example:

 Info:= [70, 71, [+720, ^A, [true, -7221]], $73, "HELLO"];

 5: ARRAYS 61

 This array has a structure that looks like this:

 ÚÄÄÄÄÄÄÄÄÄÄ¿ ÚÄÄÄÄÄÄÄÄÄÄ¿ ÚÄÄÄÄÄÄÄÄÄÄ¿
 ³ Info ÄÅÄÄÄÄ> ³ 70 ³ ÚÄÄ> ³ +720 ³
 ÀÄÄÄÄÄÄÄÄÄÄÙ ³ÄÄÄÄÄÄÄÄÄÄ³ ³ ³ÄÄÄÄÄÄÄÄÄÄ³
 ³ 71 ³ ³ ³ ^A ³
 ³ÄÄÄÄÄÄÄÄÄÄ³ ³ ³ÄÄÄÄÄÄÄÄÄÄ³ ÚÄÄÄÄÄÄÄÄÄÄ¿
 ³ ÄÄÄÄÄÅÄÄÙ ³ ÄÄÄÄÄÅÄÄÄÄ> ³ true ³
 ³ÄÄÄÄÄÄÄÄÄÄ³ ÀÄÄÄÄÄÄÄÄÄÄÙ ³ÄÄÄÄÄÄÄÄÄÄ³
 ³ $73 ³ ³ -7221 ³
 ³ÄÄÄÄÄÄÄÄÄÄ³ ÚÄÄÄÄÄÄ¿ ÀÄÄÄÄÄÄÄÄÄÄÙ
 ³ ÄÄÄÄÄÅÄÄÄÄÄ> ³ ^H ³
 ÀÄÄÄÄÄÄÄÄÄÄÙ ³ÄÄÄÄÄÄ³
 ³ ^E ³
 ³ÄÄÄÄÄÄ³
 ³ ^L ³
 ³ÄÄÄÄÄÄ³
 ³ ^L ³
 ³ÄÄÄÄÄÄ³
 ³^O+$80³
 ÀÄÄÄÄÄÄÙ

 Here, Info(0) contains 70, Info(2,0) contains 720, and Info(2,2,0)
 contains "true" (-1). Also, after we store Info(4) into a character
 variable, we can use it as a character array and access the individual
 bytes in the string "HELLO". For example:

 character C;
 integer Info;
 begin
 Info:= [70, 71, [+720, ^A, [true, -7221]], $73, "HELLO"];
 C:= Info(4);
 ChOut(0, C(1));
 . . .

 This displays the character "E", and

 Text(0, Info(4));

 displays the string "HELLO".

 Variables local to a procedure normally don't retain their values from
 the previous time that the procedure was called. Usually this doesn't
 matter, but occasionally the value of a variable is needed the next time
 the procedure is called. A simple way to code this is to make the vari-
 able global. However, if the variable is not used by any other procedure,
 it's better to keep the procedure modular by keeping its variables local.
 Constant arrays can be used to do this. (Other languages call these
 "static variables".) Here is an example:

 62 5: ARRAYS

 proc MakeNumber;
 int Counter;
 begin
 Number:= Ran(100) + 1;
 Counter:= [0];
 Counter(0):= Counter(0) + 1;
 if Counter(0) >= 3 then
 begin
 Number:= 50;
 Counter(0):= 0; \Reset the counter
 end;
 end;

 This procedure sets Number (a global) to 50 every third time it's called.
 Counter could be declared and initialized in the main procedure, but this
 way it's kept local to the only procedure that uses it. This makes the
 overall program more modular and less confusing.

 5.6 EXAMPLE PROGRAM: RECORDS (Advanced)

 Because of the flexibility of XPL0 arrays, record structures can be made.
 A record structure is an array that contains elements of different types.
 In XPL0 integers and reals cannot both appear in a single array. However,
 integer values can be used to represent such diverse things as numbers,
 addresses of strings, and elements of a set.

 Here is a program that combines the concept of sets with constant arrays
 and complex data structures.

 \records.xpl
 int File, Person;

 def \Person\ Name, SS, Sex, Birth, Dependents, Status;

 def \Name\ Last, First;
 def \Sex\ Male, Female;
 def \Birth\ Month, Day, Year;
 def \Status\ Married, Widowed, Divorced, Single;

 def \Month\ Jan=1, Feb, Mar, Apr, May, Jun,
 Jul, Aug, Sep, Oct, Nov, Dec;

 5: ARRAYS 63

 begin \Main
 File:=[[["WIRTH", "NIKLAUS"],
 "701-25-9412",
 Male,
 [Aug, 30, 1944],
 4,
 Married],

 [["BOREAL", "LENNY"],
 "521-54-1657",
 Male,
 [Oct, 27, 1948],
 1,
 Single],

 [["MUPPET", "PIGGY"],
 "345-51-7734",
 Female,
 [Feb, 25, 1955],
 1,
 Single]];

 for Person:= 0 to 2 do
 if File(Person,Sex)=Female & File(Person,Status)=Single then
 begin
 Text(0, "MISS ");
 Text(0, File(Person,Name,First));
 ChOut(0 ,^);
 Text(0, File(Person,Name,Last));
 CrLf(0);
 end;
 end; \Main

 This program scans File for nubile females (and old maids) and produces
 the following output:

 MISS PIGGY MUPPET

 The program begins by defining the elements of the set Person. The
 elements that describe Person are: Name, social security number (SS),
 Sex, date of Birth, number of Dependents, and marital Status. Some of
 these elements are in turn defined as consisting of sub-elements. Name,
 for instance, consists of a Last name and a First name.

 All these elements are mapped into the locations of the constant array
 called "File". The "def" declaration provides names for these locations
 (subscripts): Name=0, SS=1, Sex=2, etc. File consists of three major
 elements, or records, of "data type" Person.

 64 5: ARRAYS

 5.7 ADDRESS OPERATOR (Advanced)

 The "address" operator provides the address where a variable is stored.
 It has the form:

 address VARIABLE

 When "address" is written in front of a variable name, the value is no
 longer the contents of the variable, but the address in memory where the
 variable contents are stored. Because variable space is dynamically
 allocated, this address is not determined until a program executes. The
 variable can be an integer, real, or character, and it can be a
 subscripted array name. The "address" of a real variable is a 32-bit
 integer.

 "Address" is the reverse operation of subscripting an array name with
 zero. For example:

 integer Frog, Pointer;
 begin
 Pointer:= address Frog;
 if Pointer(0) = Frog then Text(0, "INVERSE OPERATORS");
 . . .

 Pointer Frog
 ÚÄÄÄÄÄÄÄÄÄÄÄ¿ ÚÄÄÄÄÄÄÄÄÄÄÄ¿
 ³ ÄÄÄÄÄÅÄÄÄ>³ ? ³
 ÀÄÄÄÄÄÄÄÄÄÄÄÙ ÀÄÄÄÄÄÄÄÄÄÄÄÙ

 "INVERSE OPERATORS" is displayed despite the value contained in Frog
 because Pointer(0) and Frog both access the same memory location.

 The address operator can be used to solve a problem with multidimensional
 character arrays. Recall that a character array with a subscript always
 accesses a single byte. However, sometimes we want to access a 32-bit
 address. Look at this program:

 char S;
 begin
 S:= ["one", "two", "three", "four"];
 ChOut(0, S(2,1));
 S(1,1):= ^W;
 Text(0, addr S(1,0)); \Caution: Text(0, S(1)); will not work
 end;

 5: ARRAYS 65

 When this runs, it displays:

 htWo

 Note that "addr S(1,0)" is used in the Text statement rather than "S(1)".
 This is because S(1) fetches a single byte rather than the entire word
 that holds the address of the string "tWo". Another solution would be to
 copy S into a temporary integer variable, for instance I, then I(1) would
 also fetch the desired address, but this is more awkward.

 5.8 RETURNING MULTIPLE VALUES (Advanced)

 An "address" operator can be used to return more than one value from a
 function. Values can always be returned by passing them through global
 variables, but a better way in some cases is to return them using
 pointers. For example:

 int Frog, Pig(11);
 int Low1, High1, Low2, High2, I;

 proc MinMax(Array, Size, Min, Max);
 \Returns the minimum and maximum values of the array
 int Array, Size, Min, Max;
 int I;
 begin
 Min(0):= Array(0); Max(0):= Array(0);
 for I:= 1 to Size-1 do
 begin
 if Array(I) < Min(0) then Min(0):= Array(I);
 if Array(I) > Max(0) then Max(0):= Array(I);
 end;
 end; \MinMax

 begin \Main
 Frog:= [16, 23, 127, -33, 0];
 MinMax(Frog, 5, addr High1, addr Low1);
 for I:= 0 to 10 do Pig(I):= 2*I*I - 16*I + 20;
 MinMax(Pig, 11, addr High2, addr Low2);
 IntOut(0, High1); ChOut(0, $09); IntOut(0, Low1); CrLf(0);
 IntOut(0, High2); ChOut(0, $09); IntOut(0, Low2); CrLf(0);
 end; \Main

 This program displays the following:

 -33 127
 -12 60

 66 5: ARRAYS

 The program displays the minimum and maximum values for two arrays. The
 calls to MinMax pass the addresses of the High and Low variables, which
 get values returned to them. The MinMax procedure uses a zero subscript
 with Min and Max to access the original variables in the calling routine.
 Compare this to the normal way arguments are passed where only a value is
 passed to a procedure. This normal way of passing arguments is known as
 "call by value". What we've done here is what's known as "call by
 reference" (or "call by address").

 Here is another example. It uses a different kind of address operator to
 pass values back from a procedure. This program converts rectangular
 coordinates to polar coordinates, and it returns the two polar
 coordinates back to the calling procedure.

 proc Rect2Polar(X, Y, A, D); \Return polar coordinates
 real X, Y, A, D;
 begin
 A(0):= ATan2(Y, X);
 D(0):= Sqrt(X*X + Y*Y);
 end; \Rect2Polar

 real Ang, Dist;
 begin
 Rect2Polar(4.0, 3.0, @Ang, @Dist);
 RlOut(0, Ang);
 RlOut(0, Dist);
 CrLf(0);
 end;

 Note that "@" is used instead of "addr". The "addr" operator doesn't work
 in this situation because it returns an integer address and what's needed
 here are pointers to the real variables Ang and Dist. A real pointer is a
 32-bit address that's packaged in a 64-bit value so that it can be
 handled like a real. It's actually just a 32-bit integer with a second
 zero integer tacked on. The "@" works exactly the same way as "addr" on
 integer variables, but it returns a real pointer when used on real
 variables. For consistency, "@" is normally used instead of the "addr"
 operator.

 When the above program runs, it displays the angle (in radians) and the
 distance:

 0.64350 5.00000

 67

 6 : I N P U T A N D O U T P U T

 Everything XPL0 can do is useless without a way to communicate with the
 outside world. Input and output (I/O) is done through intrinsics, which
 call system routines in Linux.

 The fundamental I/O intrinsics are:

 variable:= ChIn(device) Input a character, or byte, from device
 ChOut(device, byte) Output a byte to the device
 OpenI(device) Make the device ready for input
 OpenO(device) Make the device ready for output
 Close(device) Close the device (flush output buffer)

 An input device, such as the keyboard, sends characters (or bytes) that
 are read in by ChIn. Each time ChIn is called, it returns with the next
 character. An output device, such as the monitor screen, receives
 characters (or bytes) that are sent by ChOut. ChOut sends a single
 character each time it's called. Some devices must be made ready, or
 "opened", before they can be used. For instance, a storage file has
 pointers that indicate where to start filling or emptying its buffer, and
 these pointers must be set to the beginning of the buffer. Bytes sent to
 an output file pass through an output buffer, and after the last byte has
 been sent, this buffer is "closed" so that any bytes remaining in it are
 written to the storage device (SD card).

 There are other intrinsics that use the fundamental capabilities provided
 by ChIn and ChOut to input and output integers and reals. For example:

 variable:= IntIn(device) Input an integer
 IntOut(device,expression) Output an integer
 variable:= RlIn(device) Input a real
 RlOut(device,expression) Output a real

 IntIn and RlIn are similar to ChIn, but they input a number consisting of
 one or more digits instead of just a single character. If a series of
 numbers are typed on the keyboard and separated by spaces then each time
 IntIn(0) is called, it returns with the value of the next number. Any
 non-numeric character (except underline) is used to separate the numbers,
 such as space, comma, carriage return, or linefeed. If the numbers come
 from device 3, it's a numeric data file.

 68 6: INPUT AND OUTPUT

 Integers and reals are normally represented outside a program as strings
 of ASCII characters. For example, IntOut(0,35) converts the integer 35
 from its 32-bit binary form into an ASCII "3" character followed by an
 ASCII "5". Conversely, when numbers are input, strings of ASCII char-
 acters are converted into binary form.

 Unlike some other languages, XPL0 has simple output commands. The ad-
 vantage is that output can be formatted in a straightforward way. For
 example, when an integer is output, only the digits of the integer (and
 possibly a minus sign) are sent out. There are no "helpful" spaces or
 linefeeds sent that might not be wanted in some cases, and that might be
 confusing to eliminate. In XPL0 if you want formatting, you do it
 yourself.

 Intrinsics used for I/O specify a device number. Device numbers are
 assigned to physical devices as follows:

 DEVICE NUMBER OUTPUT DEVICE INPUT DEVICE
 ÄÄÄÄÄÄÄÄÄÄÄÄÄ ÄÄÄÄÄÄÄÄÄÄÄÄÄ ÄÄÄÄÄÄÄÄÄÄÄÄ
 0 Monitor Screen Buffered Keyboard
 1 Monitor Screen Unbuffered Keyboard
 2 Printer * --
 3 File File
 4 Serial Port * Serial Port *
 5 Printer * Printer Status
 6 Monitor Screen Unbuffered keyboard
 7 Null Null
 8 Buffer Buffer

 * Not implemented.

 6.0 DEVICE 0

 Output device 0 is the monitor screen. It displays ASCII characters and
 handles certain control characters such as tab, form feed (clears the
 screen), bell, carriage return, linefeed, and backspace. Text reaching
 the end of a line automatically wraps to the beginning of the next line.
 Text written beyond the bottom line scrolls the entire screen up one
 line. Tab stops are every eighth column.

 6: INPUT AND OUTPUT 69

 Input device 0 is a buffered keyboard. Characters are echoed on the
 monitor screen as they are typed in, but the buffer holds them until the
 "Enter" (Carriage Return) key is struck. This enables errors to be
 corrected using the "Backspace" key before the characters are sent to
 the program. The buffer holds up to 128 characters including the carriage
 return ($0D) at the end. Typing a Ctrl+C aborts the program.

 Output and input can be redirected using the Linux commands ">" and "<"
 on the command line when starting a program. The "<" command is useful
 because it provides a simple way to make an input data file.

 OpenI(0) initializes the keyboard, which discards any characters that
 were previously struck and still residing in any of its buffers. For
 example, it's a good idea to do an OpenI(0) before getting a reply to a
 critical question like: "Delete all files?". OpenO(0) and Close(0) do
 nothing.

 6.1 DEVICE 1

 Device 1 is identical to device 0 for output.

 For input, keystrokes are not echoed on the monitor screen, although a
 flashing cursor is displayed (when in text modes but not graphic modes).
 There is no buffer, so keystrokes are sent to the program as soon as they
 are struck. Of course, calling ChIn(1) waits until a key is struck.
 Typing a Ctrl+C aborts the program (unless TrapC(true) has been called).

 If a non-ASCII key is struck, such as "F1", a zero is returned. ChIn(1)
 must be called a second time to get the key's scan code (see: A.4:
 Keyboard Scan Codes). F11 and F12 and Ctrl+Function keys are not
 available. Only the Alt values for Alt+A through Alt+Z are available.
 (The Alt+Function keys are used by Linux to switch terminals.) If the
 Pause key is struck, another key must be struck before ChIn(1) will
 return (with a zero).

 ChIn(1) can get characters from an input file by typing "<" on the
 command line. This is not suitable for reading binary files because
 escape codes are converted to scan codes and a control-C will abort the
 program.

 OpenI(1) discards any pending keystrokes.

 70 6: INPUT AND OUTPUT

 6.2 DEVICE 2

 Device 2 is the printer. (Not implemented.)

 6.3 DEVICE 3

 Device 3 is a storage file. Opening, reading, writing, and closing device
 3 is more complicated than the other devices. The usual operations are:

 \Read an input file
 FD:= FOpen("/path/filename.ext", 0); \Get input file descriptor
 FSet(FD, ^I); \Set device 3 to descriptor
 OpenI(3); \Initialize input buffer
 repeat until ChIn(3) = $1A; \Read some characters
 FClose(FD); \Release descriptor

 \Write an output file
 FD:= FOpen("/path/filename.ext", 1); \Get output file descriptor
 FSet(FD, ^o); \Set device 3 to descriptor
 OpenO(3); \Initialize output buffer
 for Ch:= $20 to $7E do ChOut(3, Ch); \Write some characters
 Close(3); \Flush output buffer
 FClose(FD); \Release descriptor

 FOpen opens a specified file and returns a "file descriptor", which is an
 integer used to refer to the file. FOpen has two arguments: the address
 of a string giving the name of the file; and the mode, which is either 0
 for input or 1 for output. The file name can include a path name. If the
 path name is omitted, the current directory is used. If you output to
 device 3 without first opening a file, Linux sends the bytes to the
 monitor screen, and no error is detected.

 FSet assigns the descriptor to be used by device 3. It also selects a large
 or small buffer for input or output. The following modes can be selected:

 ^i = Input using small buffer
 ^I = Input using large buffer
 ^o = Output using small buffer
 ^O = Output using large buffer

 6: INPUT AND OUTPUT 71

 The large buffers are faster than the small ones, but there are only two
 of them, one for input and one for output. Several files can be open
 simultaneously if the small buffers are used.

 OpenI(3) and OpenO(3) reset their file pointers to the beginning of their
 files. Close(3) flushes any characters that might be remaining in the
 large output buffer and writes them to the storage device (SD card).

 FClose flushes all internal buffers associated with the file descriptor.
 If the file was created or changed then its time, date, and size are
 updated in the Linux directory. When a program terminates, any open file
 descriptors are automatically closed.

 END OF FILE

 Character files may be terminated with a control-Z ($1A). This is merely a
 programming aid since the file-handling intrinsics pay no attention to
 control-Z's, which enables them to handle any kind of data files, such as
 binary files.

 Some character files are not terminated by a control-Z, so a control-Z is
 automatically generated if a program attempts to read beyond the end of
 the file. If the program attempts this a second time, a run-time I/O
 error occurs.

 When reading binary files, the program must know when to stop. An easy
 way to do this is to use the intrinsics Trap (17) and GetErr (22), and
 read until an error is detected. If you use this method, note that an
 extra control-Z is returned at the end, and it is not part of the file.

 OPENING FILES FROM THE COMMAND LINE (Advanced)

 When a program starts, any characters entered on the command line after
 the program name are copied into device 8's buffer. Any input or output
 file names are typed in after the program's name. For example, the
 following command line starts the program called "lowcase" and opens
 file1 for input and file2 for output:

 lowcase file1.txt file2.txt

 72 6: INPUT AND OUTPUT

 \lowcase.xpl 17-Dec-2016
 \This copies a file, shifting all characters to lowercase.

 int FDIn, FDOut, Ch, I;
 char CmdLine($80);
 begin
 I:= 0; \Get copy of command line
 repeat Ch:= ChIn(8);
 CmdLine(I):= Ch;
 I:= I+1;
 until Ch=\EOF\$1A;

 FDIn:= FOpen(CmdLine, 0); \Open first file name for input
 FSet(FDIn, ^I);
 OpenI(3);

 loop for I:= 1 to $7F do \Scan to second file name
 if CmdLine(I) = ^ then quit;

 FDOut:= FOpen(CmdLine+I, 1); \Open second file name for output
 FSet(FDOut, ^O);
 OpenO(3);

 repeat I:= ChIn(3); \Copy and shift to lowercase
 if I>=^A & I<=^Z then I:= I+$20;
 ChOut(3, I);
 until I=\EOF\$1A;

 Close(3);
 FClose(FDIn);
 FClose(FDOut);
 end;

 A simpler version of this program takes advantage of Linux's ability to
 redirect I/O devices. This second version of lowcase is run like this:

 lowcase <file1.txt >file2.txt

 int C;
 repeat C:= ChIn(1); \Device 1 doesn't buffer nor echo chars
 if C>=^A & C<=^Z then C:= C+$20;
 ChOut(0, C); \Device 0 can be redirected to a file
 until C=\EOF\$1A;

 6: INPUT AND OUTPUT 73

 6.4 DEVICE 4

 Device 4 is the serial communications port. (Not implemented.)

 6.5 DEVICE 5

 Device 5 is the printer. (Not implemented.)

 6.6 DEVICE 6

 Output device 6 is similar to devices 0 and 1, but characters can be
 displayed in color and be confined to a window. Output cannot be
 redirected to a file using ">" on the command line.

 The full IBM/OEM character set of the original IBM-PC is supported in
 three font sizes. A character's foreground and background color can be
 specified using the Attrib intrinsic (69). A window size and location can
 be defined using the SetWind intrinsic (70). Character positions aren't
 restricted to character-cell boundaries, such as set by the Cursor
 intrinsic, but instead can be set to any pixel using the Move intrinsic.

 Device 6 normally uses an 8x16-pixel serif font, device $106 uses an 8x8
 sans-serif font, and device $206 uses an 8x14 sans-serif font. If the
 video mode is set to a low resolution then device 6 uses a shorter font
 so that 25 lines fill the screen. For instance, if video mode $13 is set,
 which is 320x200, then device 6 uses an 8x8 font (200/8 = 25). This is
 consistent with the way the IBM-PC works.

 Device 6 does not position characters at the location of the flashing
 cursor set by Linux before a program starts and by devices 0 and 1.
 Instead, it positions characters at the graphic pen position set by the
 Move intrinsic (43). Thus it's generally desirable to turn off the
 flashing cursor by calling ShowCursor(false) when device 6 is used. It's
 automatically turned off if SetVid (45) sets a graphic mode (consistent
 with the IBM-PC).

 A particularly noticeable problem occurs if the flashing cursor is left
 on and the Cursor intrinsic is used. Old characters (often spaces) will
 be displayed at any location that Cursor moves to.

 74 6: INPUT AND OUTPUT

 This table shows how the different devices handle control characters on
 the monitor screen:

 DEVICE BEL (07) BS (08) TAB (09) LF (0A) FF (0C) CR (0D)
 ÄÄÄÄÄÄ ÄÄÄÄÄÄÄÄ ÄÄÄÄÄÄÄ ÄÄÄÄÄÄÄÄ ÄÄÄÄÄÄÄ ÄÄÄÄÄÄÄ ÄÄÄÄÄÄÄ
 0 x x x x x x
 1 x x x x x x
 6 - - - x - x

 An "x" means that the control function is done, while "-" means that a
 character is displayed instead. Device 6 displays all byte codes as
 characters (including $00-$1F and $7F-$FF) except $0A and $0D. ($00, $20
 and $FF are displayed as space characters.)

 A linefeed (LF $0A) moves to the beginning of a new line, consistent with
 the Linux convention. It's equivalent to the DOS/Windows convention of a
 carriage return (CR) plus a linefeed (LF).

 Input from device 6 is similar to device 1 in that keystrokes are sent to
 the program as soon as they are struck (there is no line buffer). It
 differs from device 1 in that keystrokes are echoed to the display. Also,
 typing a Ctrl+C (or Ctrl+Break) does not abort the program; it's handled
 like any other keystroke. If a non-ASCII key is struck, such as an arrow
 key or F1, its Linux escape sequence is returned (and echoed); and its
 scan code is not available. Use ChIn(1) to handle these special keys.

 OpenO(6) moves the graphic pen position to the upper-left corner of the
 screen and sets the attribute to white characters on a black background.
 It also resets any window set up by SetWind to the size of the full
 screen and enables normal scrolling and cursor movement.

 6.7 DEVICE 7

 Device 7 is the null device. It's used to discard unwanted output. For
 example, the compiler sends its output to a file, but if it detects an
 error, it diverts the output to the null device.

 Input from device 7 returns a control-Z (EOF).

 6.8 DEVICE 8

 Device 8 is a 256-byte circular buffer. It has a variety of uses. For
 example, the following routine displays the number in X, replacing the
 decimal point with a comma, which is the format used in some European
 countries. Note that a control-Z (EOF) is returned when reading beyond
 the last character written, and it's used to detect the end of the
 number.

 6: INPUT AND OUTPUT 75

 OpenO(8); \Start writing at the beginning of buffer
 RlOut(8, X); \Write the number to the buffer
 OpenI(8); \Start reading at the beginning of buffer
 loop begin
 Ch:= ChIn(8); \Read character from buffer
 if Ch = ^. then Ch:= ^,; \Change decimal point
 if Ch = $1A then quit; \Quit if EOF character
 ChOut(0, Ch); \Display the character
 end;

 OpenO(8) and OpenI(8) reset their respective output and input pointers to
 the start of the buffer.

 When a program starts, any characters entered on the command line after
 the program name are copied into device 8's buffer. This provides a
 convenient way to pass information to a program, such as file names or
 numeric values.

 ÚÄÄÄÄÄÄÄÄÄÄÄÂÄÄÄÂÄÄÄÄÄÄÄÄÄÂÄÄÄÄÄ¿
 ÄÄ> ÚÄ¿ ³ ³ ÄÄÄÄÄÄÙ ÚÄ¿ ³
 ³ ³ ³ ³ ÃÄÙ ³ ³ ÀÄÄÄÄÄÄÄÄÄÙ ³ ³
 ³ ÀÄ´ ÄÄÅÄÙ ÚÄÁÄÁÄÄÄÄÄÄÄÄ ÚÄÄÄÙ ³
 ³ ³ ÚÄÙ ÄÄ´ ÄÄÂÄ¿ ÄÄÂÄÄÄ´ ÄÄÂÄ´
 ÃÄÙ ÀÄÙ ÄÄÄÄÁÄ¿ ³ ÀÄÄ ÀÄ¿ ³ ³
 ³ ÄÄÄÄÄÄÂÄÄÄÂÄÙ ÃÄÄÄÅÄÄÄÂÄÂÄÙ ³ ³
 ³ ÚÄ¿ ÄÄÙ ÚÄÙ ³ ³ ÄÄÙ ³
 ³ ³ ÀÄÂÄÄÄÁÄÂÄÙ ÚÄÙ ³ ÀÄÄÄÁÄÂÄÄ ³
 ³ ÚÄÙ ÚÄÅÄÄ ÃÄÄ ÚÄÄÄÙ ³
 ³ ÚÄÁÄÂÄÙ ³ ÚÄÙ ³ ÄÄÙ ÄÄÙ ÚÄÄÄÙ ³
 ³ ³ ÀÄÄÄÙ ³ ÄÄÁÄÄ ÚÄÄÄÄÄÁÄÄÄÄÄ´
 ³ ³ ÀÄÄÄÂÄÄÄÁÄÄÄÂÄÄÄÙ ÚÄÄÄÄÄÄÄ¿ ³
 ³ ÃÄÄÄ¿ ÚÄÄÄÄ ³ ÄÄÄÄÁÄÄ ÚÄÙ ³
 ³ ³ ÃÄÂÄÙ ÄÄÄÄÅÄÂÄÄÄÄÄÂÄÁÄ´ ÄÄ´
 ³ ³ ³ ÄÄÄÄÄÄÙ ÄÄ¿ ÀÄÄ ÄÄ>
 ÀÄÄÄÁÄÄÄÁÄÄÄÄÄÄÄÄÄÄÄÄÄÁÄÄÄÁÄÄÄÄÄÙ

 76

 APPENDIX

 A . 0 : I N T R I N S I C S

 Here is a list of the intrinsics in alphabetic order:

 Abort = 16 var:= Log(real) = 59
 var:= Abs(int) = 0 adr:= MAlloc(bytes) = 73
 var:= ACos(real) = 63 var:= Mod(real,real) = 58
 var:= ASin(real) = 62 MoveMouse = 78
 var:= ATan2(realY,realX) = 57 Move(X,Y) = 43
 Attrib(bg:fg) = 69 OpenI(dev) = 13
 BackUp = 83 var:= OpenMouse = 85
 var:= ChIn(dev) = 7 OpenO(dev) = 14
 var:= ChkKey = 33 Paint(X,Y,W,H,image,W2) = 81
 ChOut(dev,byte) = 8 PlaySoundFile(pathname) = 103
 var:= Cos(real) = 60 Point(X,Y,color) = 41
 Clear = 40 var:= Ran(range) = 1
 Close(dev) = 15 RanSeed(int) = 79
 CopyMem(dst,src,bytes) = 100 RawText(dev,str) = 71
 CrLf(dev) = 9 var:= ReadPix(X,Y) = 44
 Cursor(X,Y) = 23 Release(adr) = 74
 DelayUS(int) = 94 var:= Rem(expr) = 2
 var:= Exp(real) = 55 var:= Rerun = 19
 var:= Extend(byte) = 5 adr:= Reserve(bytes) = 3
 FClose(hand) = 32 Restart = 6
 FillMem(adr,byte,bytes) = 101 var:= RlAbs(real) = 51
 var:= Fix(real) = 50 var:= RlIn(dev) = 47
 var:= Float(int) = 49 RlOut(dev,real) = 48
 var:= FOpen(pathname,0=r/1=w) = 29 adr:= RlRes(int) = 46
 Format(int,int) = 52 SetFB(W,H,D) = 84
 var:= Free = 18 SetFont(height,adr) = 92
 FSet(hand,^I/^O) = 24 SetHP(adr) = 21
 adr:= GetDateTime = 95 SetPalette(reg,R,G,B) = 90
 var:= GetErr = 22 SetRun(bool) = 25
 adr:= GetFB = 97 SetVid(mode) = 45
 adr:= GetFont(set) = 91 SetWind(X0,Y0,X1,Y1,mode,fill) = 70
 adr:= GetHP = 20 ShowCursor(bool) = 88
 var:= GetKey = 89 ShowMouse(bool) = 77
 adr:= GetMouse = 86 ShowPage(0/1) = 99
 adr:= GetMouseMove = 87 var:= Sin(real) = 56
 var:= GetShiftKeys = 93 Sound(vol,dur,period) = 39
 var:= GetTime = 82 var:= Sqrt(real) = 53
 var:= HexIn(dev) = 26 var:= Swap(int) = 4
 HexOut(dev,int) = 27 var:= Tan(real) = 61
 Hilight(X0,Y0,X1,Y1,bg:fg) = 72 var:= TestC = 76
 InsertKey(byte) = 96 Text(dev,str) = 12
 var:= IntIn(dev) = 10 Trap(bits) = 17
 IntOut(dev,int) = 11 TrapC(bool) = 75
 Line(X,Y,color) = 42 WaitForVSync = 98
 var:= Ln(real) = 54

 A.0: INTRINSICS 77

 Intrinsics have been added over the years as they were needed. The result
 is that they tend to be grouped, with the fundamental ones first. For
 instance, intrinsics 40 through 45 all pertain to graphics.

 In the descriptions that follow, each heading shows the intrinsic's
 number and an example call. An assignment such as "variable:=" indicates
 that the intrinsic is a function that returns a value. All the values and
 arguments are integers unless "real" is shown.

 0: variable:= Abs(value);

 This intrinsic returns the absolute value of the argument. If the value
 is negative, the sign is removed. For example:

 X:= Abs(X);

 WARNING: There is one exception:

 Abs(-2147483648) = -2147483648, or Abs($8000_0000) = $8000_0000

 A faster way to get the absolute value is to use the "abs" command word.
 This lowercase "abs" works for both integers and reals.

 1: variable:= Ran(value);

 This intrinsic returns a random number between zero and the argument
 minus one. For example:

 X:= Ran(100); \Range is 0 through 99
 X:= Ran(0); \Resets seed for a repeatable sequence
 X:= Ran(-4); \Randomizes then returns Ran(4)

 The random number generator produces a repeatable sequence of random
 numbers from a particular seed. Each time a program starts, this seed is
 "randomized" using the system time in microseconds.

 2: variable:= Rem(expression);

 This intrinsic is used with integer division. It returns the value of the
 remainder of the division in the argument expression. If a zero argument
 is used, the intrinsic returns the remainder of the last division
 performed. For example:

 X:= Rem(7/3); \X gets 1
 Y:= Rem(0); \Y gets 1
 Z:= Rem(-18/-5); \Z gets -3

 78 A.0: INTRINSICS

 The remainder gets the sign of the dividend (numerator), which is not
 necessarily the same sign as the quotient. The command word "rem", which
 is faster, can be used instead of calling this intrinsic.

 3: address:= Reserve(value);

 This intrinsic sets aside some memory space, which is usually used for an
 array, and returns the starting address of this space. The argument
 specifies the number of bytes to be reserved. For example:

 Data:= Reserve(1000); \1000 bytes or 250 integers

 Space reserved in a procedure is released when the procedure returns.

 Array space is normally reserved in the declaration of the array name.
 For example, assuming that Data is defined as "char", this does the same
 thing as above:

 char Data(1000);

 4: variable:= Swap(value);

 This intrinsic returns the value obtained by swapping the low two bytes
 with each other and the high two bytes with each other. For example:

 X:= Swap($12345678); \X gets $34127856

 The command word "swap", which is faster, can be used instead of calling
 this intrinsic.

 5: variable:= Extend(value);

 This intrinsic extends the sign bit of the low byte to a 32-bit integer.
 It's useful when fetching signed numbers from a character array. For
 example:

 X:= Extend($FD); \X gets $FFFF_FFFD (= -3)
 X:= Extend(3); \X gets $0000_0003 (= +3)

 The command word "extend", which is faster, can be used instead of
 calling this intrinsic.

 A.0: INTRINSICS 79

 6: Restart;

 This intrinsic immediately terminates execution of the program, sets the
 Rerun flag to "true", and restarts the program from the beginning. This
 intrinsic is rarely used. Sometimes when procedure calls are nested many

 levels deep and an error condition is detected that a high-level pro-
 cedure must handle, it's simpler to restart the program than to pass the
 error indication back through the many levels of procedure calls. See
 intrinsics Rerun (19) and SetRun (25).

 7: variable:= ChIn(device);

 This intrinsic reads in one byte from the specified input device. The
 byte is usually an ASCII character (hence: CHaracter IN), but it can be
 any 8-bit value. After the character is read in, ChIn is ready to read
 the next character. For example:

 X:= ChIn(0); \Get byte from keyboard buffer

 8: ChOut(device, byte);

 This intrinsic sends a byte to the specified output device. For example:

 ChOut(0, ^=); \Display "=" on the screen
 ChOut(3, $FF); \Send $FF to the output file

 9: CrLf(device);

 This intrinsic sends a carriage return ($0D) and linefeed ($0A) to the
 specified output device. It begins a new line.

 10: variable:= IntIn(device);

 This intrinsic gets a decimal integer from the specified input device. It
 converts the integer from ASCII digits into a 32-bit binary value.
 Integers are in the range: -2147483648 through 2147483647. For example:

 X:= IntIn(0); \Get an integer from the keyboard buffer

 After the integer is read in, IntIn is ready to read the next integer.
 Any leading non-numeric characters, such as spaces and commas, are
 skipped, and any underlines are ignored. This intrinsic does not return
 until an integer (or control-Z, which returns 0) is read in. The integer
 must be terminated by a non-numeric character.

 80 A.0: INTRINSICS

 11: IntOut(device, value);

 This intrinsic sends a decimal integer to the specified output device.
 It converts the integer from its signed 32-bit binary value into ASCII
 digits. For example:

 IntOut(0, X); \Display the value in X on the screen

 12: Text(device, address);

 This intrinsic sends an ASCII text string to the specified output device.
 The beginning address of the string is passed. For example:

 Text(0, "This is a string");
 String:= "HELLO";
 Text(0, String); \Display HELLO on the screen

 13: OpenI(device);

 This intrinsic executes the initialization routine for the specified
 input device. For example:

 OpenI(0); \Clear the keyboard buffer

 14: OpenO(device);

 This intrinsic executes the initialization routine for the specified
 output device. For example:

 OpenO(3); \Get ready to write to the file

 15: Close(device);

 This intrinsic executes the close routine for the specified output
 device. For example:

 Close(3); \Flush output buffer to the file

 A.0: INTRINSICS 81

 16: Abort;

 This intrinsic aborts the program. It does the same thing as the "exit"
 statement except that it cannot return a value. It's included here for
 compatibility with other versions of XPL0. New code should use "exit"
 instead.

 17: Trap(bits);

 This intrinsic determines which run-time errors abort the program and
 display error messages. The default is to trap (abort on) all errors, but
 they can be individually disabled. The argument is an integer, each set
 bit of which enables one of these run-time errors:

 bit 0: Integer division by 0 bit 7: Real underflow *
 1: Out of memory space 8: Fix argument out of range
 2: I/O error 9: Square root error
 3: Invalid opcode * 10: Logarithm error *
 4: Invalid intrinsic * 11: Exponential error *
 5: Real division by 0.0 * 12: --
 6: Real overflow * 13: ATan2(0.0, 0.0) *

 * Not implemented

 For example, sometimes you don't care if you divide by zero, and you
 certainly don't want your program to stop if you do. Trap($FFFE) will
 disable this error trap, and the divide will give the best answer it can
 (2147483647).

 18: variable:= Free;

 This intrinsic returns the number of bytes of available heap space. Since
 variables and arrays are dynamically allocated space, the number of bytes
 returned varies depending on where and when Free is called. The largest
 possible Reserve is usually this value minus a few hundred bytes of
 working space. For example:

 Buffer:= Reserve(Free-300); \A big buffer

 82 A.0: INTRINSICS

 19: boolean:= Rerun;

 This intrinsic returns the value of the Rerun flag, which is either true
 or false. The Rerun flag is false when a program starts. It's set to
 "true" by the intrinsic Restart (6), and it can be set to "true" or
 "false" by the intrinsic SetRun (25). These intrinsics are rarely used.

 20: address:= GetHp;

 This intrinsic returns the current value of the heap pointer. GetHp does
 the same thing as Reserve(0). For example:

 X:= GetHp;

 This intrinsic is rarely used.

 21: SetHp(address);

 This intrinsic sets the heap pointer to the specified memory address.
 This intrinsic is very rarely used.

 22: error:= GetErr;

 This intrinsic returns the number of the most recently detected un-
 trapped error. If this number is 0 then no error was detected. After
 returning the error number, GetErr is internally reset to 0, ready for
 the next call. See the Trap intrinsic (17). For example:

 if GetErr # 0 then Text(0, "TROUBLE!");

 When a program terminates, a run-time error message appears if the
 internal error number is not 0.

 23: Cursor(X, Y);

 This intrinsic sets the position of the cursor on the monitor screen. The
 next character sent out appears at this location. X is the horizontal
 position, with 0 being the left column; and Y is the vertical position,
 with 0 being the top row. For example:

 Cursor(3, 4); \Fourth column, fifth row

 A.0: INTRINSICS 83

 24: FSet(descriptor, mode);

 This intrinsic assigns the file descriptor that is to be used by device
 3. The "descriptor" is normally gotten from FOpen (29). The "mode" is one
 of the following:

 ^i = Input using small buffer
 ^I = Input using large buffer
 ^o = Output using small buffer
 ^O = Output using large buffer

 There is only one large buffer for input and one large buffer for output,
 but several small buffers can be open at the same time. The large buffers
 hold 1024 bytes and are much faster than the small buffers, which hold a
 single byte each.

 25: SetRun(boolean);

 This intrinsic sets the Rerun flag directly. This intrinsic is rarely
 used. See intrinsics Restart (6) and Rerun (19).

 26: variable:= HexIn(device);

 This intrinsic gets a hex integer from the specified input device. Hex
 values are in the range $0000_0000 through $FFFF_FFFF. For example:

 X:= HexIn(0); \Get hex value from keyboard buffer

 This intrinsic skips any leading non-hex characters until a hex character
 is found, thus the dollar sign is optional. Hex numbers are unsigned, thus
 a minus sign will be ignored. Any underlines in the hex number are also
 ignored.

 Hex digits are read until a non-hex character (or control-Z) is found,
 thus numbers are terminated by a non-hex character, such as a carriage
 return. This intrinsic also returns after reading eight hex digits, which
 enables continuous sequences of hex digits to be read 32-bits at a time.

 27: HexOut(device, value);

 This intrinsic sends a hex integer to the specified output device. For
 example:

 HexOut(0, $a12); \Displays: "00000A12" on the screen

 84 A.0: INTRINSICS

 29: descriptor:= FOpen("/path/filename.ext", mode);

 This intrinsic opens a file and returns its descriptor. The file is
 specified by a string containing the file name and an optional path name.
 Note that file names are case-sensitive under Linux. No wild cards (* or
 ?) are allowed. Any extra space characters are ignored. The string must
 be less than 256 characters long and must be terminated by one of four
 methods:

 - Bit 7 set on the last character
 - A zero byte after the last character
 - A comma after the last character
 - A space or control character (<=$20), such carriage return

 "Mode" is 0 for read and 1 for write.

 FOpen is typically used with other intrinsics as shown here:

 FD:= FOpen("/boot/config.txt", 0);
 FSet(FD, ^I);
 OpenI(3);

 When a file is opened for writing, if it already exists, its contents are
 discarded; if it does not exist, a new one is created. If you send
 characters to device 3 without first opening a file with FOpen, Linux
 sends them to the monitor screen, and no error is detected. (See: 6.3
 Device 3).

 32: FClose(descriptor);

 This intrinsic closes a file descriptor. All internal buffers associated
 with the file are flushed, and the descriptor is released for possible
 reuse. If the file was modified, the time, date, and size are updated in
 the directory.

 When a descriptor is closed, it ceases to exist. If additional operations
 need to be made to the file a new descriptor must be obtained using FOpen
 (29).

 33: boolean:= ChkKey;

 This intrinsic returns "true" if a key was struck on the keyboard.

 A.0: INTRINSICS 85

 39: Sound(volume, duration, period);

 This intrinsic emits a constant tone from the speaker. "Volume" is zero
 for no sound and non-zero for full sound. "Duration" is the number of
 seconds times 20. "Period" is in microseconds, thus it's equal to one
 million divided by the desired frequency. This intrinsic can be used as
 an approximate time delay by setting "volume" to zero. The optimizing
 compiler (xx) must be used for the tone to be emitted, however, it will
 work as a delay when used with either compiler. For example:

 Sound(1, 20, 3817); \One second of Middle C (262 Hz)

 40: Clear;

 This intrinsic quickly clears the graphics screen and sets the pen
 position to the upper-left corner (0,0). Text mode screens should be
 cleared by sending a form feed like this: ChOut(0, $0C).

 41: Point(X, Y, color);

 This intrinsic draws a point (pixel) located at the X and Y coordinates.
 The upper-left corner of the display is coordinate 0,0. X increases to
 the right, and Y increases downward. The ranges of X, Y, and "color" vary
 depending on the video mode set by SetVid (45) or by the arguments sent
 by SetFB (84). The way a color gets displayed depends on the depth of the
 mode, which is specified in bits.

 Color bits:

 8 Color is specified by a byte that selects one of 256 colors
 from a palette. The first eight colors are those listed for
 the Attrib intrinsic (69). For example, $0C selects bright red.

 16 Color is specified by intensities of red, green and blue using
 this bit pattern: rrrr rggg gggb bbbb. For example, $F800
 displays bright red.

 24 Color is specified by intensities of red, green and blue using
 this byte pattern: RR GG BB. For example, $FF0000 displays
 bright red.

 32 Color is specified the same as for 24-bit depth, but its
 transparency is determined by the highest byte. The pattern is:
 AA RR GG BB. AA specifies (alpha) transparency ranging from 0
 being completely transparent (invisible) to $FF being completely
 opaque. For example $80FF0000 displays red with any pixels that
 are already on the screen partially showing through.

 86 A.0: INTRINSICS

 The default video mode (3) uses 16 bits (unlike the IBM-PC's 4 bits) to
 specify color.

 When a mode with fewer than eight bits is selected, if bit seven of
 "color" is set then the low six bits of "color" are exclusive-ored with
 the pixel already on the screen. This provides a simple way to move an
 image over a background pattern by exclusive-oring its pixels with the
 background pixels, and then erasing the image and restoring the
 background by exclusive-oring the image a second time.

 42: Line(X, Y, color);

 This intrinsic draws a straight line from the last point drawn--or
 moved to with the Move intrinsic--to the specified X and Y coordinates.
 "Color" is the same as for Point (41), but the high byte can be used to
 specify various patterns of dotted and dashed lines.

 Pixels are not drawn at locations corresponding to set bits in this high
 byte. For example, for video modes with eight or fewer bits of color,
 setting "color" to $7F01 draws a line with widely space dots. For video
 modes with more than eight bits of color the highest byte is used, thus
 the same dotted and dashed pattern is specified with "color" set to
 $7F0000A8 (which sets the blue intensity for 24-bit color to the same
 intensity as used for palette register 1). There is no dotted and dashed
 line capability for 32-bit color modes, which instead use the highest
 byte to specify transparency.

 For example:

 SetVid($101); \Set 640x480x8 graphics
 Move(10, 50); \Set the start of the line
 Line(160, 100, 1); \Draw a solid blue line
 Line(319, 199, $AA04); \Continue with a dotted red line

 43: Move(X, Y);

 This intrinsic is used to set the beginning of a line or the location
 where characters will be displayed by device 6. It sets the graphic pen
 position (penx, peny).

 44: color:= ReadPix(X, Y);

 This intrinsic returns the color of the pixel (point) at the specified
 coordinates.

 A.0: INTRINSICS 87

 45: SetVid(mode);

 This intrinsic sets the video display mode. It clears the screen and sets
 the cursor and pen positions to the upper-left corner (0,0). Any window
 set up by SetWind (70) is expanded to the full screen dimensions. Device
 6 attribute colors and 8-bit graphic palette colors are reset to their
 defaults.

 The CGA, EGA, VGA, and VESA modes defined by the IBM-PC are simulated:

 Mode Resolution Colors Type
 ÄÄÄÄ ÄÄÄÄÄÄÄÄÄÄ ÄÄÄÄÄÄ ÄÄÄÄ
 $00 40x25 16 text
 $01 40x25 16 text
 $02 80x25 16 text
 $03 80x25 16 text

 $04 320x200 4 graphic
 $05 320x200 4 graphic
 $06 640x200 2 graphic
 $07 80x25 2 text

 $0D 320x200 16 graphic
 $0E 640x200 16 graphic
 $0F 640x350 2 graphic
 $10 640x350 16 graphic

 $11 640x480 2 graphic
 $12 640x480 16 graphic
 $13 320x200 256 graphic

 $6A 800x600 16 graphic
 $100 640x400 256 graphic

 Additional graphic modes:

 Color 320x200 640x480 800x600 1024x768 1280x1024
 Bits
 ----- ------- ------- ------- -------- ---------
 4 $0D $12 $6A/102 $104 $106
 8 $13 $101 $103 $105 $107
 15/16 $10D $110 $113 $116 $119
 16 $10E $111 $114 $117 $11A
 24 $10F $112 $115 $118 $11B

 88 A.0: INTRINSICS

 The number of colors and the number of color bits shown are the original
 specification. All modes actually have at least seven color bits and thus
 can display at least 128 colors. Those modes with fewer than eight color
 bits use the most significant bit to specify exclusive-oring, as
 described for the Point intrinsic (41). The modes that specify 15 color
 bits are actually displayed in the 16-bit format, which is described in
 Point (41). Modes not listed are set to 640x480 graphics with eight color
 bits.

 Text modes $02 and $03 actually display the resolution and color depth
 set by the operating system. This is normally much greater than the 80
 columns by 25 rows defined by the IBM-PC, and 16-bit color is normally
 used. Characters can be displayed in graphic as well as text modes, but
 the flashing cursor is turned off for graphic modes. Points and lines can
 be drawn in text as well as graphic modes (unlike the IBM-PC).

 The Raspberry Pi always displays square pixels, so, for example, mode $06,
 which is 640x200x2, does not make the pixels taller to fill the screen.

 Some versions of Raspbian have the red and blue colors reversed for
 24-bit graphic modes. This can be corrected by adding framebuffer_swap=1
 to /boot/config.txt.

 Here's an example of a graphic program that plots a sine wave:

 int X;
 begin
 SetVid($101); \640x480 with 256 colors
 Move(320, 0); Line(320, 479, 1); \Draw axes in blue
 Move(0, 240); Line(639, 240, 1);
 for X:= 0 to 639 do \Plot in light red
 Point(X, 240 - Fix(180.0 *Sin(Float(X-320) /60.0)), $C);
 X:= ChIn(1); \Wait for keystroke
 SetVid(3); \Restore text mode
 end;

 A.0: INTRINSICS 89

 46: real variable:= RlRes(integer);

 This intrinsic reserves space for real arrays. RlRes(3) reserves enough
 memory to hold three real numbers. For example:

 real Array;
 Array:= RlRes(3); \Reserve elements 0 through 2

 Array space is normally reserved in the declaration of the array name.
 For example, this does the same thing as above:

 real Array(3);

 47: real variable:= RlIn(device);

 This intrinsic gets a real number from the specified input device. It
 converts the number from its ASCII digits into binary form. After the
 number is read in, RlIn is ready to read the next number. Any leading
 non-numeric characters, such as spaces and commas, are skipped, and any

 underlines in the number are ignored. This intrinsic does not return
 until a number (or control-Z, which returns 0.0) is read in, thus the
 number must be terminated by a non-numeric character. For example:

 Array(2):= RlIn(0); \Get real number from buffered keyboard

 48: RlOut(device, real);

 This intrinsic sends a real value to the specified output device. It
 converts the real value from its binary form into ASCII digits. For
 example:

 RlOut(2, 3600.0*24.0*365.25); \Print seconds in a year

 The number of digits shown after the decimal point can be specified by
 the Format intrinsic (52).

 90 A.0: INTRINSICS

 49: real variable:= Float(integer);

 This intrinsic converts an integer value to its equivalent real number.
 (See: 2.1 Mixed Mode.) For example:

 RlOut(0, (Float(35)); \Display "35.00000"

 The command word "float" does the same thing but is faster.

 50: integer:= Fix(real);

 This intrinsic rounds a real value to its nearest integer. (See: 2.1
 Mixed Mode.) For example:

 IntOut(0, Fix(13.002)); \Display "13"

 Converting a value outside the range -2147483648.0 through 2147483647.0
 causes a fix overflow run-time error.

 The command word "fix" (lowercase) does almost the same thing, and it's
 several times faster. The only difference is that it does not abort with
 a run-time error if the argument is out of range. Instead, it returns the
 closest possible signed integer, either -2147483648 or 2147483647.

 51: real variable:= RlAbs(real);

 This intrinsic takes the absolute value of a real number. For example:

 X:= RlAbs(X); \Remove the minus sign from X

 The command word "abs" does the same thing but is faster. Also, this
 (lowercase) "abs" works for both reals and integers.

 52: Format(integer, integer);

 This intrinsic specifies the format of real numbers that RlOut (48) sends
 to an output device. The first integer is the number of places before the
 decimal point, including a possible minus sign; and the second integer
 specifies the number of places after the decimal point. If the first
 integer is 0 then scientific notation is used. If the first integer is -1
 (or any negative value) then engineering notation is used.

 A.0: INTRINSICS 91

 One purpose of Format is to align decimal points. However, if the value
 is too large to fit in the designated places, all digits are still sent
 out and the decimal point is not aligned. If the format is not specified
 then RlOut uses the default: Format(5,5). If the number of digits
 specified after the decimal point is 0 then a decimal point is not sent
 out. Truncated values round to the number of displayed digits. For
 example:

 define A = 12345.67;
 begin
 RlOut(0, A); CrLf(0); \sends 12345.67000
 RlOut(0, -A); CrLf(0); \sends -12345.67000
 Format(6, 2);
 RlOut(0, A); CrLf(0); \sends 12345.67
 RlOut(0, -A); CrLf(0); \sends -12345.67
 RlOut(0, 3.14); CrLf(0);\sends 3.14
 Format(0, 1);
 RlOut(0, A); CrLf(0); \sends 1.2E+004
 RlOut(0, -A); CrLf(0); \sends -1.2E+004
 Format(-1, 4);
 RlOut(0, A); CrLf(0); \sends 12.3457E+003
 RlOut(0, -A); CrLf(0); \sends -12.3457E+003
 Format(6, 0);
 RlOut(0, A); CrLf(0); \sends 12346
 RlOut(0, -A); CrLf(0); \sends -12346
 end;

 53: real variable:= Sqrt(real);

 This intrinsic returns the square root of the argument. If the argument
 is negative, a run-time error occurs. For example:

 Root2:= Sqrt(2.0); \1.414213562

 The command word "sqrt" (lowercase) does almost the same thing and is
 faster, and it works for both reals and integers. The only difference is
 that it does not abort with a run-time error if the argument is negative.
 If the argument is a negative integer, it returns 0. If the argument is a
 negative real, it returns a special value called "not a number" (NAN).

 54: real variable:= Ln(real);

 This intrinsic returns the natural logarithm (base e) of the argument.
 The argument should be > 0.0, otherwise the returned value is either
 infinite (INF) or not a number (NAN).

 92 A.0: INTRINSICS

 55: real variable:= Exp(real);

 This intrinsic computes the exponential function (e^X). This is the
 inverse operation of Ln (54). For example, RlOut(0, Exp(Ln(123.0)))
 displays 123.00000. If the argument is larger than 709.0 then INF is
 returned.

 56: real variable:= Sin(real);

 This intrinsic computes the sine function. All trig functions use angles
 represented in radians. To convert from radians to degrees, multiply by
 180.0/pi (approximately 57.2957795) degrees/radian. To convert degrees to
 radians, divide by 180.0/pi. For example:

 X:= Sin(30.0/57.2957795); \Sine of 30 degrees (=0.5)

 It may seem surprising that the area under the first hump of a sine curve
 is exactly equal to two given that one of the dimensions is an irrational
 number. This little program more or less confirms it:

 real S, X;
 def DX=0.001; \ ôã
 def Pi=3.141592653589793; \ ³ sin(x) dx = 2
 [S:= 0.0; X:= 0.0; \ õ0
 repeat S:= S + Sin(X)*DX;
 X:= X + DX;
 until X >= Pi;
 RlOut(0, S);
]

 57: real variable:= ATan2(real Y, real X);

 This intrinsic computes the arc-tangent in radians of Y divided by X. If
 the computed angle is in the range ñpi/2 (ñ90 degrees) then X can be set
 to 1.0. However, if an angle over the entire range of a circle (ñpi or
 ñ180ø) is to be computed then the signed values of the Y and X
 coordinates are used. This converts rectangular coordinates to polar
 coordinates. For example:

 Angle:= ATan2(0.5, 1.0); \Angle:= ATan(0.5) (= 26.56505ø)
 Angle:= ATan2(13.0, -13.0); \Angle:= 3/4 pi (= 135ø)
 Angle:= ATan2(-5.0, -5.0); \Angle:= -3/4 pi (= -135ø)

 A.0: INTRINSICS 93

 58: real variable:= Mod(real, real);

 This intrinsic computes the modulo function. This is the real counterpart
 to the Rem intrinsic (2). Mod(A, B) is defined as A modulo B, which is
 defined as A - Int(A/B) * B. Where Int(A/B) extracts the largest integer
 <= Abs(A/B) and attaches the sign of A/B (i.e. it truncates toward zero).
 For example:

 X:= Mod(10.2, 3.0); \X:= 1.2
 X:= Mod(-10.2, 3.0); \X:= -1.2
 X:= Mod(7.6, 2.5); \X:= 0.1
 X:= Mod(123.456, 1.0); \Get the fractional part (0.456)

 59: real variable:= Log(real);

 This intrinsic computes the common logarithm function (base 10). The
 argument must be > 0.0, otherwise a run-time error occurs.

 60: real variable:= Cos(real);

 This intrinsic computes the cosine function. The argument is the angle in
 radians. See Sin (56).

 61: real variable:= Tan(real);

 This intrinsic computes the tangent function. The argument is the angle
 in radians. See Sin (56).

 62: real variable:= ASin(real);

 This intrinsic computes the arc-sine function in radians. The argument
 should be in the range ñ1.0, otherwise "not a number" (NAN) is returned.

 Ang:= ASin(X); \X: -1.0 to +1.0; Ang: -pi/2 to +pi/2

 94 A.0: INTRINSICS

 63: real variable:= ACos(real);

 This intrinsic computes the arc-cosine function in radians. The argument
 should be in the range ñ1.0, otherwise "not a number" (NAN) is returned.

 Ang:= ACos(X); \X: -1.0 to +1.0; Ang: 0 to pi

 69: Attrib(colors);

 This intrinsic specifies the colors used when sending characters to
 device 6. (Devices 0 and 1 always display white characters on a black
 background. The term "attribute" comes from the IBM-PC.) Normally, the
 high nibble of the argument sets the background color, and the low nibble
 sets the foreground color. The colors for the nibble values are listed
 below. For example, Attrib($1F) would display bright white characters on
 a blue background.

 $0: Black $8: Gray
 $1: Blue $9: Light Blue
 $2: Green $A: Light Green
 $3: Cyan $B: Light Cyan
 $4: Red $C: Light Red
 $5: Magenta $D: Light Magenta
 $6: Brown $E: Yellow
 $7: White $F: Bright White

 If the background color is the same as the foreground color then the
 background color is not written to the screen. This makes the background
 transparent (and makes characters draw faster). This also means that if a
 character is written on top of an existing character, it will not
 completely replace the existing character as is done with normal text.
 This can be used to show struck-out characters.

 The above describes how the Attrib intrinsic works for the default 16-bit
 color video mode and for modes with fewer than eight color bits. The
 modes described below all have eight or more color bits, and they don't
 have the option of making the background transparent. If the background
 and foreground colors are the same then any character output to device 6
 will display a solid colored block and the character will not be visible.

 For 8-bit color modes, the low byte specifies the foreground color, and
 the next higher byte specifies the background color. For example,
 Attrib($010F) would display bright white characters on a blue background.

 For 24-bit color modes, only the foreground color can be specified, and
 the background is always black. For example, Attrib($FFFFFF) would display
 bright white characters on a black background.

 A.0: INTRINSICS 95

 For 32-bit color modes, only the foreground color can be specified, but
 transparency can also be specified. The highest byte specifies the amount
 of (alpha) transparency. It ranges from 0 being completely transparent
 (invisible) to $FF being completely opaque. For example, Attrib
 ($80FFFFFF) would display half-bright white characters with any
 background pixels showing through at half intensity.

 Video modes with fewer than eight color bits have one more trick. If the
 background and foreground colors are the same then the character is
 written by exclusive-oring the color with what's already on the screen,
 and the background color is not written. This enables characters to be
 drawn on top of an existing pattern; and if the character is redrawn in
 the same location, it gets exclusive-ored a second time, which erases the
 character and restores the original pattern.

 70: SetWind(X0, Y0, X1, Y1, mode, fill);

 This intrinsic specifies the window used when sending characters to
 device 6. X0, Y0 sets the upper-left corner of the window; and X1, Y1
 sets the lower-right corner.

 "Mode" specifies how the window operates.

 0 = Scroll: When the cursor position moves beyond the right edge
 of the window, it jumps to the beginning of the next line down.
 When the cursor position moves beyond the bottom of the window,
 the text in the window scrolls up and the cursor position jumps
 to the beginning of the bottom line. (Writing to the bottom-
 rightmost character cell scrolls the text.)

 1 = Wrap: When the cursor position moves beyond the right edge of
 the window, it wraps to the beginning of the current line. When
 the cursor position moves beyond the bottom of the window (with a
 linefeed, which is the same as a "newline" in Linux), the cursor
 position wraps to the beginning of the top line.

 2 = Clip: When the cursor position moves beyond the right edge or
 beyond the bottom of the window then characters are clipped and
 don't appear.

 If the "fill" flag is "true", the window is erased by filling it with the
 background color specified by the Attrib intrinsic (69). If the "fill"
 flag is "false", the window is set up without changing any characters
 already on the screen.

 96 A.0: INTRINSICS

 Opening device 6 for output with OpenO(6) resets the window to the full
 screen size and enables normal scroll mode. No text is erased.

 Note: The Cursor intrinsic (23) is not affected by the position of a
 window; it always uses the upper-left corner of the entire screen as
 position 0,0.

 71: RawText(device, address);

 This intrinsic is the same as the Text intrinsic except that strings are
 terminated by a space character with its most significant bit set ($A0).
 This enables the extended ASCII codes to be displayed. The terminating
 space character is not sent out. For example:

 RawText(6, "ÉÍÍÍÍÍÍÍ» ");

 The normal Text intrinsic (12) can display strings containing extended
 ASCII characters if the command word "string" is used to specify zero-
 terminated strings. For example:

 string 0;
 Text(6, "ÉÍÍÍÍÍÍÍ»");
 RawText(6, "ÉÍÍÍÍÍÍÍ» "); \displays terminating space

 72: Hilight(X0, Y0, X1, Y1, attribute);

 This intrinsic changes the colors in a specified area on the text screen
 without changing the characters. The area is defined by the corners of a
 rectangle. X0, Y0 is the upper-left corner, and X1, Y1 is the lower-right
 corner. These are character coordinates like used with the Cursor
 intrinsic (23), not graphic coordinates like used with the Move intrinsic
 (43). "Attribute" defines the background and foreground colors (see 69:
 Attrib).

 Hilight is typically used to highlight selected menu items, but it can
 also be used to make such things as drop shadows for windows. If the
 foreground color is the same as the background color then any characters
 in the specified rectangle will be blotted out (there is no exclusive-or
 feature).

 A.0: INTRINSICS 97

 73: address:= MAlloc(bytes);

 This intrinsic returns the starting address of a block of memory. The
 number of bytes in the block are specified by the argument.

 Unlike the Reserve intrinsic (3), MAlloc does not automatically release
 memory when a procedure returns. If MAlloc is called in a procedure and
 the procedure is repeatedly executed, more memory is allocated each time
 (resulting in the infamous "memory leak" problem).

 If insufficient memory is available then RUN-TIME ERROR 2: OUT OF MEMORY
 is trapped. If you write beyond the end of the allocated space, Linux may
 abort the program with a segmentation fault.

 74: Release(address);

 This intrinsic deallocates a block of memory that was allocated by
 MAlloc. The address of the block is passed to indicate which block to
 deallocate. For example:

 proc Demo;
 char Image;
 begin
 Image:= MAlloc($100000); \1 megabyte
 . . .
 Release(Image);
 end;

 Allocated memory is automatically released when a program terminates, so
 it's unnecessary to release memory allocated in the main procedure.

 If a block of memory is released using an address not returned by MAlloc,
 Linux will likely abort the program with a segmentation fault.

 75: TrapC(boolean);

 This intrinsic turns control-C trapping on and off. "True" is passed to
 turn on control-C trapping, which prevents the Ctrl+C key from aborting a
 program. Control-C trapping is normally off. Any change to the way
 control-C is handled is restored when a program terminates.

 98 A.0: INTRINSICS

 76: boolean:= TestC;

 When control-C trapping is on, this intrinsic is used to determine if the
 Ctrl+C key has been struck. If it has then TestC returns "true".

 Each time the Ctrl+C key is struck, a status flag is set. When TestC is
 called, it returns the state of this status flag and then resets it to
 "false".

 A control-C cannot be detected until it's read in from the keyboard.
 However, since the buffered keyboard (device 0) reads keystrokes before
 they are read in by a program (because the Enter key has not yet been
 struck) TestC can detect a control-C before the program reads all the
 characters from the buffer.

 77: ShowMouse(boolean);

 This intrinsic turns the display of the mouse pointer on and off. The
 mouse pointer defaults to being off.

 78: MoveMouse;

 This intrinsic moves the displayed mouse pointer as needed to track
 the position of the mouse.

 79: RanSeed(integer);

 This intrinsic sets the seed used by the Ran intrinsic's random number
 generator (1). This provides millions of different, repeatable random
 number sequences.

 81: Paint(X, Y, W, H, Image, W2);

 This intrinsic quickly copies an image to display memory, which is useful
 for animations. X, Y are the coordinates where the upper-left corner of
 the image data will be displayed on the screen. W, H are the width and
 height (in pixels) of the displayed image data. "Image" is the address of
 the image data array. W2 is the actual width (in pixels) of the image
 data array.

 For 8-bit color modes ($13, $101, etc.) the image array is reserved as a
 byte array, for example: char Image(640*480).

 A.0: INTRINSICS 99

 For 16-bit color modes ($111, $114, etc.) the size of the image array
 must be doubled, for example: char Image(640*480*2). A pair of bytes must
 be combined, and the colors must be set in the resulting 16-bits like
 this:

 bit: $F E D C B A 9 8 7 6 5 4 3 2 1 0
 color: r r r r r g g g g g g b b b b b

 For the 24-bit color modes ($112, $115, etc.) Image is reserved as an
 integer array, for example: int Image(640*480). The order of the colors
 in the 4-byte integer is: $IIRRGGBB, where II is the intensity, or
 brightness, ranging from 0 (black) to $FF (full brightness). This color
 arrangement is the same even if SetFB (84) sets the color depth to 32
 bits.

 WARNING: The brightness feature does not work in some distributions of
 the operating system. To enable it, remove "framebuffer_ignore_alpha=1"
 in /boot/config.txt.

 82: time:= GetTime;

 This intrinsic returns the current time in microseconds. The unsigned
 32-bit integer rolls over about every hour and 11 minutes.

 GetTime is often used to measure the duration between two events. If this
 duration is less than half an hour, you don't need to be concerned about
 the rollover. The duration is simply the time of the second event minus
 the time of the first event. Any rollovers are automatically handled.

 Two consecutive calls to GetTime on the slowest Raspberry Pi (RPi-1 @ 700
 MHz) takes less than 4 microseconds.

 int T0, I;
 [T0:= GetTime; \How long for a billion?
 for I:= 1 to 1_000_000_000 do \nothing\;
 RlOut(0, float(GetTime-T0) / 1e6);
 Text(0, " seconds^J")]

 100 A.0: INTRINSICS

 83: BackUp;

 This intrinsic enables the last byte read from any input device to be
 reread (like C's ungetc function). It's handy, for instance, in the
 situation where a user can step through a series of numbers with the
 Enter key (or Tab key) and change a number merely by typing its new
 value. In the example below BackUp enables IntIn to be used if the user
 typed a digit.

 int Number, Digit;
 begin
 Number:= 123; \default value
 IntOut(0, Number); CrLf(0);
 Digit:= ChIn(0);
 if Digit>=^0 & Digit<=^9 then \change it
 [BackUp; Number:= IntIn(0)];
 IntOut(0, Number); CrLf(0); \confirm result
 end;

 84: SetFB(width, height, depth);

 This intrinsic sets the displayed frame buffer to a specified width,
 height, and depth. Widths should be multiples of 32 pixels. Heights can
 be almost anything, but pixels are always square rather than being
 stretched to fill the screen. Depths can be 8, 16, 24, or 32 bits. A
 depth of 8 uses a palette for colors (like the PC's VGA mode $13). Depths
 of 16 and 24 are like the PC's high color and true color modes. A depth
 of 32 provides a byte that specifies (alpha) transparency that ranges
 from 0 being completely transparent (invisible) to $FF being completely
 opaque.

 Since calling this intrinsic is regarded as setting a graphic mode, the
 flashing cursor is turned off. It can be turned on if desired with
 ShowCursor (88).

 85: boolean:= OpenMouse;

 This intrinsic initializes the mouse and sets its position to the center
 of the screen, although its pointer remains hidden. This intrinsic
 returns "false" if an error is detected. If a mouse is not connected,
 this does not detect its absence. Since the mouse is now opened
 automatically, this intrinsic is no longer needed.

 A.0: INTRINSICS 101

 86: address:= GetMouse;

 This intrinsic returns the address of an integer array that contains the
 state of the mouse. The integers are:

 0: X position (from left edge of screen, in pixels)
 1: Y position (down from top of screen, in pixels)
 2: buttons: bit 0 set = left button down
 bit 1 set = right button down
 bit 2 set = middle button down

 For example, if Address(2) = 3, it means that both the left and right
 buttons are currently being pressed.

 87: address:= GetMouseMove;

 This intrinsic returns the address of an integer array that contains the
 distance that the mouse moved (in pixels) since the previous call to this
 intrinsic. The integers are:

 0: change in X position (in pixels)
 1: change in Y position (in pixels)

 88: ShowCursor(boolean);

 This intrinsic turns the flashing cursor off or on. The flashing cursor
 defaults to being on for text display modes and off for graphic display
 modes. If a program turns it off, it normally should be turned back on
 when the program terminates. For example:

 ShowCursor(false); \disable the flashing cursor

 89: character:= GetKey;

 This intrinsic has become mostly obsolete because its features have been
 added to ChIn(1), which should be used in new code. This intrinsic
 returns the ASCII value of a character struck on the keyboard. It's
 similar to ChIn(1) but handles non-ASCII keys a different way. Linux's
 read(stdin) returns escape sequences for the function keys, arrow keys,
 and even for the Esc key itself. Since this can complicate things, this
 intrinsic converts these non-ASCII keys to the negative value of their
 scan codes (which are listed in appendix A.4). F11 and F12 and Ctrl+
 Function keys are not available. Only the Alt values for Alt+A through
 Alt+Z are available. (The Alt+Function keys are used by Linux to switch
 terminals.) This intrinsic does not echo characters to the screen, and
 Ctrl+C does not abort the program. If the Pause key is struck, another
 key must be struck before this will return (with a zero).

 102 A.0: INTRINSICS

 90: SetPalette(register, red, green, blue);

 This intrinsic changes a color in the 256-color palette that's used with
 8-bit depth and lower graphics. The red, green and blue values range from
 0 through 255, but only the high six bits are actually used (just like
 VGA on the PC). An 8-bit or lower graphic mode must already be set up
 with either intrinsic SetFB (84) or SetVid (45).

 Unfortunately SetPalette has a couple bizarre problems (due to Raspbian's
 frame buffer driver): color register 15 or 255 must be set to make any
 register actually change, and (incredibly) the frame buffer memory might
 be zeroed (erased) as a side effect. This latter problem was fixed in the
 September 8, 2014 version of Raspbian. (The Linux command "uname -a"
 displays the version and date.)

 91: address:= GetFont(face);

 This intrinsic is used to return the address of a 256-character font
 table. If face = 0 then address points to a 8x16 table, which has 16
 bytes per character. If face = 1 then the address of the 8x8 table is
 returned, and if face = 2 the address of the 8x14 table is returned. One
 use for accessing these font tables is to make banner programs with giant
 letters.

 92: SetFont(height, address);

 This intrinsic changes the character font table used by device 6. Height
 is the number of bytes per character, which is also the height of a
 character cell in pixels. Character cells are always 8 pixels wide.
 Address is the location of the replacement table. There is no way to
 change the font used by devices $106 and $206.

 93: bits:= GetShiftKeys;

 This intrinsic returns the current state of some keyboard keys. If bits =
 1 then a left or right Shift key is held down. If bits = 4 then a Ctrl
 key is down, and if bits = 8 then an Alt key is down. If, for example,
 bits = $D then all three keys are currently held down. Bit 5 = NumLock.

 94: DelayUS(duration);

 This intrinsic delays "duration" microseconds. For example, DelayUS
 (54945) would delay about 1/18 of a second, which is the duration of a
 IBM-PC system clock tick.

 A.0: INTRINSICS 103

 95: address:= GetDateTime;

 This intrinsic returns the address of a byte (char) array containing the
 current system date and time. The bytes are:

 0: year since 1900
 1: month (1..12)
 2: day (1..31)
 3: hour (0..23)
 4: minute (0..59)
 5: second (0..59)
 6: hundredths of seconds (0..99)
 7: day of week (0=Sun, 1=Mon, ... 6=Sat)

 96: InsertKey(character);

 This intrinsic inserts a character into the keyboard's input buffer. The
 next key read from ChIn(1) will be the inserted character. Several
 characters can be inserted before being read out in sequence by ChIn(1).
 Keys can also be read out with ChIn(0), but there may already be other
 characters ahead of the inserted keys in its buffer. This intrinsic is
 useful for GUI buttons and menu items that have shortcut keys.

 97: address:= GetFB;

 This intrinsic returns the address of an integer array that contains
 information about the currently displayed frame buffer. The integers are:

 0: width (in pixels)
 1: height (in pixels)
 2: depth (in bits per pixel, e.g: 8, 16, 32)
 3: frame buffer's memory address
 4: graphic pen horizontal position (penx)
 5: graphic pen vertical position (peny)

 98: WaitForVSync;

 This intrinsic waits for the vertical sync signal, which occurs every
 1/60th of a second at the beginning of each video frame. It's useful for
 animations. This signal is available in versions of Raspbian on and after
 September 8, 2014.

 104 A.0: INTRINSICS

 99: ShowPage(page);

 This intrinsic sets the page of the video memory that gets displayed.
 There are two pages: 0 and 1. Page 1 immediately follows page 0 in
 memory. Images can be built up out of sight on page 1, while page 0 is
 being displayed, by adding an offset to the Y coordinate equal to the
 screen height. For example: Point(X, Y+480, $0F). This intrinsic works in
 versions of Raspbian on and after September 8, 2014.

 100: CopyMem(dst, src, size);

 This intrinsic copies an array of bytes from the address in "src" to the
 address in "dst". It's equivalent to, but many times faster than:
 for I:= 0 to Size-1 do Dst(I):= Src(I); It also works if the source and
 destination areas overlap.

 101: FillMem(address, value, size);

 This intrinsic fills an array of bytes. It's equivalent to, but many
 times faster than: for I:= 0 to Size-1 do Address(I):= Value;

 103: PlaySoundFile("/path/filename.ext");

 This intrinsic starts playing a sound file. The file extension can be:
 wav, raw, voc or au. The xpl program continues to run while the sound
 file is playing.

 105

 A . 1 : C O M P I L E E R R O R S

 XPL0 has two different types of error messages. The first type, called
 "compile errors", occur when a program is being compiled; and the second
 type, called "run-time errors", occur when the program runs.

 If the compiler detects an error, it stops and asks if it should attempt
 to continue. A "Y" (or just hitting the Enter key) continues; an "N"
 aborts the compile. The output file is discarded if any error is
 detected.

 For example, if we try to compile:

 Frog:= 2 + 3.5 + Frog;

 the compiler stops and displays:

 Frog:= 2 + 3.5 + F
 ***** ERROR NO. 46 *****
 MIXED MODE
 ATTEMPT TO CONTINUE (Y/N)?

 Compile error messages can sometimes be misleading because the actual
 error might have occurred prior to the point that the compiler flags as
 the error. The reason these two points don't always coincide is because
 the compiler finds the code at the actual error to be syntactically
 correct, but it interprets it in a way other than what was intended. This
 alternate interpretation can go for several lines before an error is
 finally flagged. An extreme example of this is failing to terminate a
 string with a close quote mark. In this case the compiler simply
 interprets the following code as being part of the string, and an error
 is not detected until either a quote mark or the end-of-file is
 encountered. Particularly misleading error messages can result from
 unpaired begin-ends.

 All the compile error messages are listed below along with suggestions
 on how to avoid them.

 1: TOO MANY VARIABLES. This is caused by a variable being declared after
 arrays that total more than 16 megabytes of space. The optimizing
 compiler (xx) does not have this limitation, nor do arrays that are set
 up using the Reserve intrinsic (3). When using the non-optimizing
 compiler (x), the problem might be avoided by declaring large arrays
 after other (scalar) variables. Passing more than 64 integers or 32 reals
 to a procedure also causes this error.

 106 A.1: COMPILE ERRORS

 2: TOO MANY REAL CONSTANT NAMES. There are too many constants "define"d
 as real values in scope at one time. The maximum number is 1600. Perhaps
 they are more global than necessary.

 3: TOO MANY NAMES. There are too many names (variables, procedures,
 intrinsics, constants, etc.) in scope at one time causing the symbol
 table to overflow. The maximum number is 1600. Perhaps some names are
 more global than necessary. Perhaps several variables could be combined
 into an array.

 4: TOO MANY 'QUITS'. There cannot be more than 160 total "quit" state-
 ments inside a "loop". This total includes "quit"s for "loop"s that
 are nested inside any outer "loop".

 5: TOO MANY STATIC LEVELS. Procedures can be nested to a maximum depth
 of eight levels.

 6: NUMBER OUT OF RANGE. Integers are limited to the range of -2147483648
 through +2147483647.

 7: NUMBER OUT OF RANGE. Intrinsic "code" declarations are limited to 0
 through 127.

 10: UNDECLARED NAME. The name is undefined here. It might be out of scope
 or be forward referenced. A procedure declaration that is missing a
 semicolon causes the rest of the line to not be seen because it's taken
 as a comment.

 11: NAME ALREADY DECLARED. This name conflicts with a previous declara-
 tion at this level. Only the first 16 characters are significant to the
 compiler.

 20: ILLEGAL START OF A STATEMENT. Missing an "end"? Unpaired "begin-
 end"s? If "procedure" is flagged then there's a missing "end" in the
 previous procedure.

 21: ":=" EXPECTED BUT NOT FOUND. Illegal variable in a "for" or an
 assignment statement? The control variable in a "for" loop cannot have a
 subscript or be declared as a "real".

 22: 'THEN' EXPECTED BUT NOT FOUND. Illegal expression in an "if" state-
 ment?

 A.1: COMPILE ERRORS 107

 23: 'DO' EXPECTED BUT NOT FOUND. Illegal expression in a "for" or "while"
 statement?

 24: 'TO' OR 'DOWNTO' EXPECTED BUT NOT FOUND. Illegal expression in a
 "for" statement? A comma does the same thing as "to".

 26: ILLEGAL FACTOR. Incomplete expression or an illegal operator?
 Semicolon or "of" before an "other" in a "case" statement? Perhaps
 parentheses are needed around an "if" expression. Perhaps a word should
 start with a capital letter.

 27: STATEMENT STARTING WITH A CONSTANT. The name is declared as a
 constant, which cannot be assigned a value.

 28: 'UNTIL' EXPECTED BUT NOT FOUND. Perhaps the previous statement is
 missing a semicolon. Unpaired "begin" "end"s within a "repeat" block?

 29: 'OTHER' EXPECTED BUT NOT FOUND. A "case" statement must be terminated
 with an "other" statement. Perhaps the previous statement is missing a
 semicolon.

 30: 'ELSE' EXPECTED BUT NOT FOUND. An "if" expression must have the
 "else" clause. Illegal expression after the "then"? Do not confuse an
 "if" expression with the more common "if" statement.

 31: DIGIT EXPECTED BUT NOT FOUND. Either the exponent of a real number or
 a hex digit is missing.

 33: INTEGER VARIABLE EXPECTED BUT NOT FOUND. The control variable in a
 "for" statement must be an integer or character variable.

 38: ">" EXPECTED BUT NOT FOUND. Arithmetic shift right "->>" incomplete?

 39: "(" EXPECTED BUT NOT FOUND. Parentheses must enclose arguments.

 40: "=" EXPECTED BUT NOT FOUND. In a "code" declaration every name must
 be set equal to an integer.

 41: ";" EXPECTED BUT NOT FOUND. A semicolon must be at the end of a
 declaration, must separate procedures, and must separate statements
 within a "begin-end" (or a "repeat-until") block. The first letter of a
 variable name must be uppercase (or an underline).

 42: CONSTANT EXPECTED BUT NOT FOUND. In a "define" or a constant array
 the values must be previously declared constants or be integer or real
 constants; they cannot be variables.

 108 A.1: COMPILE ERRORS

 43: VARIABLE EXPECTED BUT NOT FOUND. The "address" and "@" operators can
 only return the address of a variable or an array or an array element.

 44: ")" EXPECTED BUT NOT FOUND. Parentheses must be balanced. Even though
 balanced, extra sets of parentheses around arguments and subscripts are
 illegal.

 45: NAME EXPECTED BUT NOT FOUND. There must be a name in a declaration.
 At least the first letter of a variable name must be uppercase (or an
 underline).

 46: MIXED MODE. Reals and integers cannot be mixed within an expression
 without explicitly doing the type conversions using the intrinsics Fix
 and Float (or the command words fix and float). This message can occur if
 a variable is undefined. Also, a forward-function declaration and its
 function must be the same data type ("integer" or "real").

 47: INTEGER EXPECTED BUT NOT FOUND. The indicated value or expression is
 not of type integer. Subscripts, the control variable in a "for" loop,
 and "case" expressions cannot be reals.

 48: 'OF' EXPECTED BUT NOT FOUND. Illegal expression in a "case" state-
 ment?

 49: ":" EXPECTED BUT NOT FOUND. Illegal expression in a "case" statement?

 50: "]" EXPECTED BUT NOT FOUND. Constant-array brackets must be balanced.
 Perhaps a comma is missing.

 51: NO ARGUMENTS DECLARED. The called procedure has no local variables
 declared and therefore cannot have arguments passed to it.

 52: STATEMENT STARTING WITH 'ELSE'. An "else" is never preceded by a
 semicolon.

 53: STATEMENT STARTING WITH 'OTHER'. An "other" is never preceded by a
 semicolon.

 54: ILLEGAL INTRINSIC CALL. Perhaps the wrong number of arguments are
 being passed. Is an integer value being passed instead of a real value,
 or vice versa? Perhaps the intrinsic is returning a value that is not
 used, or vice versa.

 60: 'QUIT' NOT IN A 'LOOP'. The "quit" statement is legal only inside a
 "loop" block.

 61: EOF EXPECTED BUT NOT FOUND. More code after the apparent end of the
 program. Unpaired "begin" "end"s? Too many "end"s or missing a "begin"?

 62: EOF INSIDE A BLOCK. End-of file (control-Z, $1A) is inside a block
 statement. Too many "begin"s or not enough "end"s? Incomplete or missing
 statement?

 A.1: COMPILE ERRORS 109

 63: EOF INSIDE A STRING. Unpaired quote mark (")? A caret (^) can cause
 a quote mark to not be seen (for example: ^").

 65: 'FPROC' & ITS 'PROC' NOT AT SAME LEVEL. A forward procedure declar-
 ation and its corresponding procedure declaration must be at the same
 static nesting level and must be in scope with each other.

 66: 'FPROC' REFERENCE NOT FOUND. Unresolved forward procedure or forward
 function reference. Perhaps it's out of scope. "fproc" and its corre-
 sponding "proc" must be at the same static level. Maybe a "begin" is
 missing.

 67: 'PROC' OR 'FUNC' EXPECTED BUT NOT FOUND. "public" must be followed by
 "procedure" or "function".

 68: 'EPROC'S AND 'PUBLIC'S MUST BE GLOBAL. "eproc"s, "efunc"s, and
 "public"s must be at level zero; they cannot be inside a procedure
 (except the main procedure).

 69: 'INCLUDE'S NESTED TOO DEEP. A file that is included can itself
 include other files. These files also can include files, but the chain of
 includes is limited to eight levels. Perhaps a file is including itself,
 or is including a file that includes the original file.

 70: BAD FILE SPEC. The specification should be: /path/filename.ext;
 Everything but the file name is optional. The semicolon is required.

 71: FILE NOT FOUND. Perhaps the file has the wrong case letters or it's
 not in the current directory.

 72: 'INT', 'REAL', 'CHAR', or 'ADDR' EXPECTED BUT NOT FOUND.

 73: DIVIDE BY ZERO. A constant expression is attempting to divide by 0.

 74: MATH ERROR IN A CONSTANT EXPRESSION. A floating point overflow or
 underflow occurred.

 75: EXPRESSION MUST BE ENCLOSED IN PARENTHESES. Exclusive-or operations
 (|) and "if" expressions must be enclosed in parentheses when the short-
 circuit boolean command-line switch (-b) is used. The script for the
 optimizing compiler (xx) uses short-circuit booleans.

 110

 A . 2 : R U N - T I M E E R R O R S

 If an error is detected while a program is running, it aborts and a
 run-time error message is displayed.

 Aborting points out errors in the code, but sometimes it's more of a
 nuisance than a help. The Trap intrinsic (17) can be used to disable
 aborting for selected run-time errors.

 These are the possible run-time error messages:

 1: DIV BY 0. Division by zero for an integer. If this is untrapped,
 2147483647 is returned for the quotient and 0 is returned for the
 remainder.

 2: OUT OF MEMORY. Memory space not available. An array declaration or a
 Reserve tried to exceed the allotted heap memory space of 64 megabytes.
 This error can also be caused by MAlloc (73) if the operating system
 cannot provide the requested amount of memory.

 3: I/O ERROR. Some device driver returned with an error. The most common
 I/O errors are caused by forgetting to specify an input or output file on
 the command line, or mistyping the name of an input file. File names in
 Linux are case-sensitive. Perhaps a device number in an intrinsic call is
 missing.

 9: FIX OVERFLOW. Fixed-point overflow. Attempted to Fix (50) too large or
 too small a value (either greater than 2147483647.0 or less than
 -2147483648.0). If untrapped, it returns the closest possible integer,
 either 2147483647 or -2147483648.

 10: SQRT < 0. Square-root error. Attempted to take the square root of a
 negative value. If untrapped, "not a number" (NAN) is returned.

 ÚÄÄÄÄÄÄÄÄÄ¿ ÚÄÄÄÄÄÄÄÄÄ¿ ÚÄÄÄÄÄÄÄÄÄ¿ ÚÄÄÄÄÄÄÄÄÄ¿ ÚÄÄÄÄÄÄÄÄÄ¿ ÚÄÄÄÄÄÄÄÄÄ¿
 ³ ÚÄÄÄÄÄ¿ ³ ³ ÚÄÄÄÄÄ¿ ³ ³ ÚÄÄÄÄÄ¿ ³ ³ ÚÄÄÄÄÄ¿ ³ ³ ÚÄÄÄÄÄ¿ ³ ³ ÚÄÄÄÄÄ¿ ³
 ³ ³ ÚÄ¿ ³ ³ ³ ³ ÚÄ¿ ³ ³ ³ ³ ÚÄ¿ ³ ³ ³ ³ ÚÄ¿ ³ ³ ³ ³ ÚÄ¿ ³ ³ ³ ³ ÚÄ¿ ³ ³
 ³ ³ ³ ÀÄÙ ³ ³ ³ ³ ÀÄÙ ³ ³ ³ ³ ÀÄÙ ³ ³ ³ ³ ÀÄÙ ³ ³ ³ ³ ÀÄÙ ³ ³ ³ ³ ÀÄÙ ³
 ³ ³ ÀÄÄÄÄÄÙ ³ ³ ÀÄÄÄÄÄÙ ³ ³ ÀÄÄÄÄÄÙ ³ ³ ÀÄÄÄÄÄÙ ³ ³ ÀÄÄÄÄÄÙ ³ ³ ÀÄÄÄÄÄÙ
 Ù ÀÄÄÄÄÄÄÄÄÄÙ ÀÄÄÄÄÄÄÄÄÄÙ ÀÄÄÄÄÄÄÄÄÄÙ ÀÄÄÄÄÄÄÄÄÄÙ ÀÄÄÄÄÄÄÄÄÄÙ ÀÄÄÄÄÄÄÄÄÄ

 111

 A . 3 : C O M M O N E R R O R S

 There are some errors that seem to catch everyone when they first start
 programming in XPL0. Here is a list of these errors beginning with the
 most common.

 1. There are several commands or symbols that must be used in pairs. Many
 newcomers omit one of the pairs. The most likely place that you might do
 this is with "begin-end"s. It's easy to get the wrong number of "end"s
 at the end of a complex procedure. The easiest way to keep track of these
 is to use indentation:

 begin
 . . .
 begin
 . . .
 begin
 . . .
 end;
 end;
 end;

 Each indentation must have a "begin" and a corresponding "end".

 Here are some other pairs to watch out for:

 " . . . " Double quotes around text strings
 (. . .) Parentheses
 [. . .] Brackets (same as "begin-end"s)
 \ . . . \ Comments (when not the last item on the line)

 2. A semicolon can catch you in two ways. One is that there must be a
 semicolon between all statements in the program. The other is that you
 must not place a semicolon before the "else" of an "if" statement or the
 "other" of a "case" statement. For example:

 112 A.3: COMMON ERRORS

 if N = Guess then
 begin
 Restart;
 MakeNumber;
 end <ÄÄÄÄÄÄÄÄÄÄÄÄ semicolon is illegal here
 else begin
 N:= N + 1; <ÄÄÄÄÄÄ semicolon is required here
 Restart; <ÄÄÄÄÄÄÄÄ semicolon is optional here
 end;

 3. Intrinsics require various numbers of arguments. A common error is to
 pass the wrong number of arguments or the wrong type of arguments
 (integer versus real). This can cause a stack imbalance that results in a
 segmentation fault.

 WRONG CORRECT
 ÄÄÄÄÄ ÄÄÄÄÄÄÄ
 Text("message"); Text(0, "message");
 ChIn(0); I:= ChIn(0);
 I:= ChOut(0,^A); ChOut(0, ^A);
 X:= Sqrt(100); X:= Sqrt(100.);

 4. When arguments are passed to a procedure, the values passed are stored
 into the first variables declared and in the same order that they are
 passed. As a program is written, it's easy to add new variables to the
 declarations, which shift their order and change which arguments are
 passed into which variables. "Integer", "real", and "character" declar-
 ations can be mixed in any way necessary to properly pass values into the
 correct variables. It's often useful to have completely separate declar-
 ations for arguments and local variables. For example:

 procedure Oink(I, X, Ch);
 integer I; \Arguments
 real X;
 integer Ch;
 integer A, B, C; \Local variables
 begin
 . . .

 5. XPL0 does not do run-time array bounds checking. Thus it's possible
 to store something into an incorrect location in memory. Almost always,
 this is due to an error in the calculation of a subscript for an array.

 6. Avoid using the same name both locally and globally. You can easily
 get confused as to which is which, and this can be a difficult error to
 find. If you use a local variable with the same name as a global
 variable, the compiler does not give a NAME ALREADY DECLARED error; the
 local variable is used instead of the global variable. As a consequence
 you should make global names longer and more formal than local names. For
 example, avoid using a name like "I" for a global in a long program. At
 the very least call it "II".

 113

 A . 4 : K E Y B O A R D S C A N C O D E S

 3B F1 68 Alt-F1 1E Alt-A
 3C F2 69 Alt-F2 1F Alt-S
 3D F3 6A Alt-F3 20 Alt-D
 3E F4 6B Alt-F4 21 Alt-F
 3F F5 6C Alt-F5 22 Alt-G
 40 F6 6D Alt-F6 23 Alt-H
 41 F7 6E Alt-F7 24 Alt-J
 42 F8 6F Alt-F8 25 Alt-K
 43 F9 70 Alt-F9 26 Alt-L
 44 F10 71 Alt-F10
 2C Alt-Z
 54 Shift-F1 78 Alt-1 2D Alt-X
 55 Shift-F2 79 Alt-2 2E Alt-C
 56 Shift-F3 7A Alt-3 2F Alt-V
 57 Shift-F4 7B Alt-4 30 Alt-B
 58 Shift-F5 7C Alt-5 31 Alt-N
 59 Shift-F6 7D Alt-6 32 Alt-M
 5A Shift-F7 7E Alt-7
 5B Shift-F8 7F Alt-8 03 Ctrl-2
 5C Shift-F9 80 Alt-9 0F Shift-Tab
 5D Shift-F10 81 Alt-0 47 Home
 82 Alt-Hyphen 48 Up arrow
 5E Ctrl-F1 83 Alt-= 49 PgUp
 5F Ctrl-F2 4B Left arrow
 60 Ctrl-F3 10 Alt-Q 4D Right arrow
 61 Ctrl-F4 11 Alt-W 4F End
 62 Ctrl-F5 12 Alt-E 50 Down arrow
 63 Ctrl-F6 13 Alt-R 51 PgDn
 64 Ctrl-F7 14 Alt-T 52 Insert
 65 Ctrl-F8 15 Alt-Y 53 Delete
 66 Ctrl-F9 16 Alt-U 73 Ctrl-Left arrow
 67 Ctrl-F10 17 Alt-I 74 Ctrl-Right arrow
 18 Alt-O 75 Ctrl-End
 19 Alt-P 76 Ctrl-PgDn
 77 Ctrl-Home
 84 Ctrl-PgUp

 114

 A . 5 : S Y N T A X S U M M A R Y

 FACTORS SECTION
 ÄÄÄÄÄÄÄ
 CONSTANTS: Decimal integers: 123, -19375 1.0
 Hex and binary integers: $FE00, %11_0110 . . 1.1
 ASCII characters: ^A, ^z 1.2
 Real numbers: 0.0, 6.63e-34 1.3
 Declared constants: define Pi=3.14; . 1.5, 2.10
 True and false 2.4
 VARIABLES: Integers: Guess 1.4
 Reals 1.4
 Array elements: Side(N) 5
 FUNCTIONS 4.5
 INTRINSICS that return a value 4.6
 TEXT STRINGS: "..." 5.2
 CONSTANT ARRAYS: [CONSTANT, ... CONSTANT] 5.5
 ADDRESS of a variable or array: addr Frog, @Array(3) 5.7

 OPERATORS

 The operator precedence (priority) is shown in parentheses; 1 is highest.
 Unary minus (or plus): - (+) (1) 2.2
 Shifts: << >> ->> (2) 2.8
 Multiplication: * (3) 2.0
 Division: / (3) 2.0
 Addition: + (4) 2.0
 Subtraction: - (4) 2.0
 Equal: = (5) 2.3
 Not equal: # (5) 2.3
 Less than: < (5) 2.3
 Less than or equal: <= (5) 2.3
 Greater than: > (5) 2.3
 Greater than or equal: >= (5) 2.3
 Boolean "not": ~ (6) 2.5
 Boolean "and": & (7) 2.5
 Boolean "or": ! (8) 2.5
 Boolean "xor": | (8) 2.5
 If expression: if (9) 2.9

 SPECIAL CHARACTERS

 Space, tab, carriage return, and form feed are formatters . 1.8
 () Expression evaluation priority, arguments, and subscripts.
 2.0, 3.9, 4.2, 5.0
 ; Statement and procedure separator and declaration terminator
 3.1, 3.11
 \\ Comment (except in strings) 3.10
 ^ ASCII constants, also ", ^ and Ctrl chars in strings 1.2, 5.2
 _ Underline in a variable or procedure name, or in a number 1.4
 {} Assembly code 3.13

 A.5: SYNTAX SUMMARY 115

 STATEMENTS

 VARIABLE:= EXPRESSION; 3.0
 begin STATEMENT; STATEMENT; ... STATEMENT end; 3.1
 [STATEMENT; STATEMENT; ... STATEMENT]; 3.1
 if BOOLEAN EXPRESSION then STATEMENT; 3.2
 if BOOLEAN EXPRESSION then STATEMENT else STATEMENT; . . . 3.2
 case of 3.3
 BOOLEAN EXPRESSION, ... BOOLEAN EXPRESSION: STATEMENT;
 ...
 BOOLEAN EXPRESSION, ... BOOLEAN EXPRESSION: STATEMENT
 other STATEMENT;
 case INTEGER EXPRESSION of 3.3
 INTEGER EXPRESSION, ... INTEGER EXPRESSION: STATEMENT;
 ...
 INTEGER EXPRESSION, ... INTEGER EXPRESSION: STATEMENT
 other STATEMENT;
 while BOOLEAN EXPRESSION do STATEMENT; 3.4
 repeat STATEMENT; ... STATEMENT until BOOLEAN EXPRESSION; . . 3.5
 loop STATEMENT; 3.6
 quit; 3.6
 for VARIABLE:= INTEGER EXPRESSION to INTEGER EXPRESSION . . . 3.7
 do STATEMENT;
 for VARIABLE:= INTEGER EXPRESSION downto INTEGER EXPRESSION . 3.7
 do STATEMENT;
 exit; 3.8
 exit BYTE EXPRESSION; 3.8
 SUBROUTINE NAME(EXPRESSION, ... EXPRESSION); 3.9, 4.0
 return; 4.4
 return EXPRESSION; 4.5
 ; (null statement) 3.11

 DECLARATIONS

 integer NAME, NAME, ... NAME; 1.5
 real NAME, NAME, ... NAME; 1.5
 define NAME=CONSTANT, ... NAME=CONSTANT; 1.6
 define NAME, NAME, ... NAME; 1.6
 procedure NAME(COMMENT); 4.0
 function TYPE NAME(COMMENT); 4.5
 code TYPE NAME(COMMENT)=INTEGER, ... NAME(COMMENT)=INTEGER; . 4.6
 fprocedure NAME(COMMENT), NAME(COMMENT), ... NAME(COMMENT); . 4.9
 ffunction TYPE NAME(COMMENT), NAME(COMMENT), ... NAME(COMMENT); 4.10
 integer NAME(DIMENSIONS), ... NAME(DIMENSIONS); 5
 real NAME(DIMENSIONS), ... NAME(DIMENSIONS); 5
 character NAME(DIMENSIONS), ... NAME(DIMENSIONS); 5

PROGRAM: ÉÍÍÍÍÍÍÍÍÍ»
ÄÄÄÄÄÄÄÄÄÄÄÄ>ºPROCEDUREºÄÄÄÄÄÄÄÂÄÄÄÄÄÄÄÂÄÄÄÄÄÄÄÄÄÄÄÄÄ>
 ÈÍÍÍÍÍÍÍÍÍ¼ ³ ÚÄ¿ ³
 À<Ä´;³<ÄÙ
PROCEDURE: ÀÄÙ
 Ú<ÄÄ<¿
 ³ ÚÄÄÄÄÄÄÄ¿ ÉÍÍÍÍ» ÚÄ¿ ³
ÄÅÄ>³integerÃÄÄÄ>ÂÄÄÄÂÄ>ºNAMEÇÄÂÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÂÄ>³;ÃÄÄÄÄÄÄÄÄÄÄÄ>´
 ³ ÀÄÄÄÄÄÄÄÙ ³ ³ ÈÍÍÍÍ¼ ³ ÉÍÍÍÍÍÍÍÍ» ³ ÀÄÙ ³
 ³ ÚÄÄÄÄ¿ ³ ³ ³ ÚÄ¿ ºINT CON º ÚÄ¿ ³ ³
 ÃÄ>³realÃÄÄÄÄÄÄ>´ ³ ÀÄ>³(ÃÄÂÄ>ºEXPRESS ÇÄÂÄ>³)ÃÄ>´ ³
 ³ ÀÄÄÄÄÙ ³ ³ ÀÄÙ ³ ÈÍÍÍÍÍÍÍÍ¼ ³ ÀÄÙ ³ ³
 ³ ÚÄÄÄÄÄÄÄÄÄ¿ ³ ³ ³ ÚÄ¿ ³ ³ ³
 ÃÄ>³characterÃÄ>Ù ³ À<ÄÄÄÄ´,³<ÄÄÄÄÙ ³ ³
 ³ ÀÄÄÄÄÄÄÄÄÄÙ ³ ÚÄ¿ ÀÄÙ ³ ³
 ³ À<ÄÄ´,³<ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ ³
 ³ ÀÄÙ ³
 ³ ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ>¿ ³
 ³ ÚÄÄÄÄÄÄ¿ ÉÍÍÍÍ» ³ ÚÄ¿ ÉÍÍÍÍÍÍÍÍÍÍ» ³ ÚÄ¿ ³
 ÃÄ>³defineÃÄÄÄÄÄÂÄ>ºNAMEÇÄÁÄ>³=ÃÄÄ>ºCONSTANT ÇÄÅÄ>³;ÃÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ>´
 ³ ÀÄÄÄÄÄÄÙ ³ ÈÍÍÍÍ¼ ÀÄÙ ºEXPRESSIONº ³ ÀÄÙ ³
 ³ ³ ÚÄ¿ ÈÍÍÍÍÍÍÍÍÍÍ¼ ³ ³
 ³ À<ÄÄ´,³<ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ ³
 ³ ÀÄÙ ³
 ³ ÚÄÄÄÄÄÄÄÄÄÄÄ>¿ ÉÍÍÍÍÍÍÍÍ» ³
 ³ ÚÄÄÄÄ¿ ³ ÚÄÄÄÄÄÄÄ¿ ³ ÉÍÍÍÍ» ÚÄÄÄÄÄÄÄÄÄ¿ ÚÄ¿ ºINTEGER º ÚÄ¿ ³
 ÃÄ>³codeÃÄÄ>ÄÄÅÄ>³integerÃ>ÅÄÂÄ>ºNAMEÇÄ>³(comment)ÃÄ>³=ÃÄ>ºCONSTANTÇÄÂÄ>³;ÃÄ>´
 ³ ÀÄÄÄÄÙ ³ ÀÄÄÄÄÄÄÄÙ ³ ³ ÈÍÍÍÍ¼ ÀÄÄÄÄÄÄÄÄÄÙ ÀÄÙ ÈÍÍÍÍÍÍÍÍ¼ ³ ÀÄÙ ³
 ³ ³ ÚÄÄÄÄ¿ ³ ³ ÚÄ¿ ³ ³
 ³ ÀÄ>³realÃÄÄÄ>Ù À<ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ´,³<ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ ³
 ³ ÀÄÄÄÄÙ ÀÄÙ ³
 ³ ÚÄÄÄÄÄÄÄÄÄÄÄÄ>¿ ³
 ³ ÚÄÄÄÄÄÄÄÄÄ¿ ³ ÚÄÄÄÄÄÄÄ¿ ³ ÉÍÍÍÍ» ÚÄÄÄÄÄÄÄÄÄ¿ ÚÄ¿ ÉÍÍÍÍÍÍÍÍÍ» ÚÄ¿ ³
 ÃÄ>³procedureÃ>ÂÄÅÄ>³integerÃÄ>ÅÄ¶NAMEÇÄ>³(comment)ÃÄ>³;ÃÄ>ºPROCEDUREÇÄ>³;ÃÄ>´
 ³ ÀÄÄÄÄÄÄÄÄÄÙ ³ ³ ÀÄÄÄÄÄÄÄÙ ³ ÈÍÍÍÍ¼ ÀÄÄÄÄÄÄÄÄÄÙ ÀÄÙ ÈÍÍÍÍÍÍÍÍÍ¼ ÀÄÙ ³
 ³ ÚÄÄÄÄÄÄÄÄÄ¿ ³ ³ ÚÄÄÄÄ¿ ³ ³
 ÃÄ>³function Ã>Ù ÀÄ>³realÃÄÄÄÄ>Ù ³
 ³ ÀÄÄÄÄÄÄÄÄÄÙ ÀÄÄÄÄÙ ³
 ³ ÚÄÄÄÄÄÄÄÄÄÄÄ>¿ ³
 ³ ÚÄÄÄÄÄÄÄÄÄÄ¿ ³ ÚÄÄÄÄÄÄÄ¿ ³ ÉÍÍÍÍ» ÚÄÄÄÄÄÄÄÄÄ¿ ÚÄ¿ ³
 ÃÄ>³fprocedureÃ>ÂÄÅÄ>³integerÃ>ÅÄÂÄ>ºNAMEÇÄÄ>³(comment)ÃÄÂÄ>³;ÃÄÄÄÄÄÄÄÄÄÄÄÄÄ>Ù
 ³ ÀÄÄÄÄÄÄÄÄÄÄÙ ³ ³ ÀÄÄÄÄÄÄÄÙ ³ ³ ÈÍÍÍÍ¼ ÀÄÄÄÄÄÄÄÄÄÙ ³ ÀÄÙ
 ³ ÚÄÄÄÄÄÄÄÄÄÄ¿ ³ ³ ÚÄÄÄÄ¿ ³ ³ ÚÄ¿ ³
 ÃÄ>³ffunction Ã>´ ÀÄ>³realÃÄÄÄ>Ù À<ÄÄÄÄÄÄÄ´,³<ÄÄÄÄÄÄÄÄÄÄÄÙ
 ³ ÀÄÄÄÄÄÄÄÄÄÄÙ ³ ÀÄÄÄÄÙ ÀÄÙ
 ³ ÚÄÄÄÄÄÄÄÄÄÄ¿ ³
 ÃÄ>³eprocedureÃ>´
 ³ ÀÄÄÄÄÄÄÄÄÄÄÙ ³
 ³ ÚÄÄÄÄÄÄÄÄÄÄ¿ ³
 ÃÄ>³efunction Ã>´
 ³ ÀÄÄÄÄÄÄÄÄÄÄÙ ³
 ³ ÚÄÄÄÄÄÄÄÄÄÄ¿ ³
 ÃÄ>³external Ã>Ù
 ³ ÀÄÄÄÄÄÄÄÄÄÄÙ
 ³
 ³ ÉÍÍÍÍÍÍÍÍÍ»
 ÀÄ>ºSTATEMENTÇÄÄÄÄÄÄÄÄÄÄÄÄÄ>
 ÈÍÍÍÍÍÍÍÍÍ¼

STATEMENT: ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ>¿
 ÉÍÍÍÍÍÍÍÍÍÍÍÍÍ» ³ ÉÍÍÍÍÍÍÍÍÍÍ» ³
 ºINTEGER, REALº ³ ÚÄ¿ ºINTEGER º ÚÄ¿ ³ ÚÄÄ¿ ÉÍÍÍÍÍÍÍÍÍÍ»
ÄÂÄÄ>ºOR CHAR NAME ÇÄÁÄ>³(ÃÄÂÄ>ºEXPRESSIONÇÄÂÄ>³)ÃÄÁÄ>³:=ÃÄÄ>ºEXPRESSIONÇÄÄÄ>¿
 ³ ÈÍÍÍÍÍÍÍÍÍÍÍÍÍ¼ ÀÄÙ ³ ÈÍÍÍÍÍÍÍÍÍÍ¼ ³ ÀÄÙ ÀÄÄÙ ÈÍÍÍÍÍÍÍÍÍÍ¼ ³
 ³ ³ ÚÄ¿ ³ ³
 ³ À<ÄÄÄÄÄ´,³<ÄÄÄÄÄÙ ³
 ³ ÉÍÍÍÍÍÍÍÍÍÍÍÍÍ» ÀÄÙ ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ>¿ ³
 ³ ºPROCEDURE, º ³ ÚÄ¿ ÉÍÍÍÍÍÍÍÍÍÍ» ÚÄ¿ ³ ³
 ÃÄÄÄÄÄÄÄ>ºINTRINSIC OR ÇÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÁÄ>³(ÃÄÂÄ>ºEXPRESSIONÇÄÂÄ>³)ÃÄÁÄÄ>´
 ³ ºEXTERNAL NAMEº ÀÄÙ ³ ÈÍÍÍÍÍÍÍÍÍÍ¼ ³ ÀÄÙ ³
 ³ ÈÍÍÍÍÍÍÍÍÍÍÍÍÍ¼ ³ ÚÄ¿ ³ ³
 ³ ÚÄÄÄÄÄ¿ ÉÍÍÍÍÍÍÍÍÍ» ÚÄÄÄ¿ À<ÄÄÄÄÄ´,³<ÄÄÄÄÄÙ ³
 ÃÄÂÄ>³beginÃÄÂ>ÄÂÄ>ºSTATEMENTÇÄÂÄÄÂÄ>³endÃÄ¿ ÀÄÙ ³
 ³ ³ ÀÄÄÄÄÄÙ ³ ³ ÈÍÍÍÍÍÍÍÍÍ¼ ³ ³ ÀÄÄÄÙ ³ ³
 ³ ³ ÚÄ¿ ³ ³ ÚÄ¿ ³ ³ ÚÄ¿ ³ ³
 ³ ÀÄÄÄ>³[ÃÄÄÄÙ À<ÄÄÄÄÄ´;³<ÄÄÄÄÙ ÀÄÄ>³]ÃÄÄÁÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ>´
 ³ ÀÄÙ ÀÄÙ ÀÄÙ ³
 ³ ÉÍÍÍÍÍÍÍÍÍÍ» ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ>¿ ³
 ³ ÚÄÄ¿ ºBOOLEAN º ÚÄÄÄÄ¿ ÉÍÍÍÍÍÍÍÍÍ»³ ÚÄÄÄÄ¿ ÉÍÍÍÍÍÍÍÍÍ»³ ³
 ÃÄ>³ifÃÄ>ºEXPRESSIONÇÄ>³thenÃÄ>ºSTATEMENTÇÁ>³elseÃÄ>ºSTATEMENTÇÁÄÄÄÄÄÄÄÄÄÄÄ>´
 ³ ÀÄÄÙ ÈÍÍÍÍÍÍÍÍÍÍ¼ ÀÄÄÄÄÙ ÈÍÍÍÍÍÍÍÍÍ¼ ÀÄÄÄÄÙ ÈÍÍÍÍÍÍÍÍÍ¼ ³
 ³ ÚÄ¿ ³
 ³ ÚÄÄÄÄÄÄÄÄÄÄÄÄ>¿ Ú<ÄÄÄÄÄÄÄÄÄÄÄÄÄÄ´;³<ÄÄÄÄÄÄÄÄÄÄÄÄ¿ ³
 ³ ³ ÉÍÍÍÍÍÍÍÍÍÍ»³ ³ ÉÍÍÍÍÍÍÍÍÍÍ» ÀÄÙ ³ ³
 ³ ÚÄÄÄÄ¿³ ºINTEGER º³ ÚÄÄ¿³ ºINTEGER º ÚÄ¿ ÉÍÍÍÍÍÍÍÍÍ»³ ÚÄÄÄÄÄ¿ ³
 ÃÄ>³caseÃÁ>ºEXPRESSIONÇÁ>³ofÃÅ>ºEXPRESSIONÇÂ>³:ÃÄ>ºSTATEMENTÇÁ>³otherÃÄ¿ ³
 ³ ÀÄÄÄÄÙ ÈÍÍÍÍÍÍÍÍÍÍ¼ ÀÄÄÙ³ ÈÍÍÍÍÍÍÍÍÍÍ¼³ ÀÄÙ ÈÍÍÍÍÍÍÍÍÍ¼ ÀÄÄÄÄÄÙ ³ ³
 ³ ³ ÚÄ¿ ³ ÚÄÄÄÄÄÄÄÄÄÄÄÙ ³
 ³ À<ÄÄÄÄ´,³<ÄÄÄÄÙ ³ ÉÍÍÍÍÍÍÍÍÍ» ³
 ³ ÉÍÍÍÍÍÍÍÍÍÍÍ» ÀÄÙ ÀÄ>ºSTATEMENTÇÄÄ>´
 ³ ÚÄÄÄÄÄ¿ ºBOOLEAN º ÚÄÄ¿ ÉÍÍÍÍÍÍÍÍÍ» ÈÍÍÍÍÍÍÍÍÍ¼ ³
 ÃÄ>³whileÃÄÄÄ>ºEXPRESSION ÇÄÄÄÄ>³doÃÄÄÄÄ>ºSTATEMENTÇÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ>´
 ³ ÀÄÄÄÄÄÙ ÈÍÍÍÍÍÍÍÍÍÍÍ¼ ÀÄÄÙ ÈÍÍÍÍÍÍÍÍÍ¼ ³
 ³ ÚÄÄÄÄÄÄ¿ ÉÍÍÍÍÍÍÍÍÍ» ÚÄÄÄÄÄ¿ ÉÍÍÍÍÍÍÍÍÍÍ» ³
 ÃÄ>³repeatÃÄÂÄ>ºSTATEMENTÇÄÄÂÄ>³untilÃÄÄ>ºBOOLEAN ÇÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ>´
 ³ ÀÄÄÄÄÄÄÙ ³ ÈÍÍÍÍÍÍÍÍÍ¼ ³ ÀÄÄÄÄÄÙ ºEXPRESSIONº ³
 ³ ³ ÚÄ¿ ³ ÈÍÍÍÍÍÍÍÍÍÍ¼ ³
 ³ À<ÄÄÄÄÄ´;³<ÄÄÄÄÄÙ ³
 ³ ÀÄÙ ÚÄÄÄÄ¿ ÉÍÍÍÍÍÍÍÍÍ» ³
 ÃÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ>³loopÃÄÄÄ>ºSTATEMENTÇÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ>´
 ³ ÀÄÄÄÄÙ ÈÍÍÍÍÍÍÍÍÍ¼ ÚÄÄÄÄ¿ ³
 ÃÄÄ>³quitÃÄÄÄÄÄÄÄÄÄ>´
 ³ ÚÄ¿ ÀÄÄÄÄÙ ³
 ³ ÉÍÍÍÍÍÍÍ» ÚÄ>³,ÃÄÄ¿ ³
 ³ ºINTEGERº ÉÍÍÍÍÍÍÍ»³ ÀÄÙ ³ ÉÍÍÍÍÍÍÍ» ³
 ³ ÚÄÄÄ¿ ºOR CHARº ÚÄÄ¿ ºINTEGERº³ ÚÄÄ¿ ³ ºINTEGERº ÚÄÄ¿ ÉÍÍÍÍÍÍÍÍÍ» ³
 ÃÄ>³forÃÄ>ºNAME ÇÄ>³:=ÃÄ>ºEXPRESSÇÅÄ>³toÃÄÅ>ºEXPRESSÇÄ>³doÃÄ>ºSTATEMENTÇÄ>´
 ³ ÀÄÄÄÙ ÈÍÍÍÍÍÍÍ¼ ÀÄÄÙ ÈÍÍÍÍÍÍÍ¼³ ÀÄÄÙ ³ ÈÍÍÍÍÍÍÍ¼ ÀÄÄÙ ÈÍÍÍÍÍÍÍÍÍ¼ ³
 ³ ÚÄÄÄÄÄÄ¿ ÉÍÍÍÍÍÍÍÍÍÍ» ÚÙ À¿ ³
 ÃÄ>³returnÃÄÄÂÄÄ>ºEXPRESSIONÇÄÄÄ¿ ³ ÚÄÄÄÄÄÄ¿³ ³
 ³ ÀÄÄÄÄÄÄÙ ³ ÈÍÍÍÍÍÍÍÍÍÍ¼ ³ À>³downtoÃÙ ³
 ³ ÀÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ>´ ÀÄÄÄÄÄÄÙ ³
 ³ ÚÄÄÄÄ¿ ÉÍÍÍÍÍÍÍÍÍÍ» ³ ³
 ÃÄ>³exitÃÄÄÄÄÂÄÄ>ºBYTE EXPR ÇÄÄ>ÅÄÄ>´
 ³ ÀÄÄÄÄÙ ³ ÈÍÍÍÍÍÍÍÍÍÍ¼ ³ ³
 ³ ÀÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ>Ù ³
 ÀÄÄ>ÁÄ>

EXPRESSION:
 ÉÍÍÍÍÍÍÍÍÍÍÍÍÍ»
 ÚÄÄÄ>ºIF EXPRESSIONÇÄÄÄÄ¿
 ³ ÈÍÍÍÍÍÍÍÍÍÍÍÍÍ¼ ³
 ³ ÉÍÍÍÍÍÍÍÍÍÍÍÍÍ» ³
 ÄÄÄÄÄÄÁ>ÂÄ>ºBOOLEAN TERM ÇÄÄÂ>ÁÄÄÄÄÄ> BOOLEAN TERM:
 ³ ÈÍÍÍÍÍÍÍÍÍÍÍÍÍ¼ ³ ÉÍÍÍÍÍÍÍÍÍÍ»
 ³ ÚÄ¿ ³ ÄÄÄÄÄÄÂÄ>ºCOMPARISONÇÄÄÂÄÄÄÄ>
 Ã<ÄÄÄÄÄÄ´!³<ÄÄÄÄÄÄÄÄ´ ³ ÈÍÍÍÍÍÍÍÍÍÍ¼ ³
 ³ ÀÄÙ ³ ³ ÚÄ¿ ³
 ³ ÚÄÄ¿ ³ Ã<ÄÄÄÄÄ´&³<ÄÄÄÄÄÄ´
 Ã<ÄÄÄÄÄÄ´or³<ÄÄÄÄÄÄÄ´ ³ ÀÄÙ ³
 ³ ÀÄÄÙ ³ ³ ÚÄÄÄ¿ ³
 ³ ÚÄ¿ ³ À<ÄÄÄÄ´and³<ÄÄÄÄÄÙ
 Ã<ÄÄÄÄÄÄ´|³<ÄÄÄÄÄÄÄÄ´ ÀÄÄÄÙ
 ³ ÀÄÙ ³
 ³ ÚÄÄÄ¿ ³
 À<ÄÄÄÄÄ´xor³<ÄÄÄÄÄÄÄÙ
 ÀÄÄÄÙ

IF EXPRESSION:
 ÉÍÍÍÍÍÍÍÍÍÍ»
 ÚÄÄ¿ ºBOOLEAN º ÚÄÄÄÄ¿ ÉÍÍÍÍÍÍÍÍÍÍ» ÚÄÄÄÄ¿ ÉÍÍÍÍÍÍÍÍÍÍ»
 ÄÄÄÄ>³ifÃÄ>ºEXPRESSIONÇÄ>³thenÃÄ>ºEXPRESSIONÇÄ>³elseÃÄÄ>ºEXPRESSIONÇÄÄÄÄÄÄÄ>
 ÀÄÄÙ ÈÍÍÍÍÍÍÍÍÍÍ¼ ÀÄÄÄÄÙ ÈÍÍÍÍÍÍÍÍÍÍ¼ ÀÄÄÄÄÙ ÈÍÍÍÍÍÍÍÍÍÍ¼

COMPARISON:
 ÚÄÄÄÄÄÄÄÄÄ>¿ ÉÍÍÍÍÍÍÍÍÍÍ»
 ³ ÚÄÄÄ¿ ³ ºARITHMETICº
 ÄÄÅÄÄ>³notÃÄÄÅÄÄ>ºEXPRESSIONÇÄÄÄÄÂÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ>¿
 ³ ÀÄÄÄÙ ³ ÈÍÍÍÍÍÍÍÍÍÍ¼ ³ ³
 ³ ÚÄ¿ ³ ÚÄÄÄÄÄÂÄÄÄÄÄÂ<ÄÁÄ>ÂÄÄÄÄÄÂÄÄÄÄÄÄ¿ ³
 ÀÄÄÄ>³~ÃÄÄÄÙ ÚÁ¿ ÚÁ¿ ÚÁ¿ ÚÁ¿ ÚÁÄ¿ ÚÁÄ¿ ³
 ÀÄÙ ³=³ ³#³ ³>³ ³<³ ³>=³ ³<=³ ÉÍÍÍÍÍÍÍÍÍÍ» ³
 ÀÂÙ ÀÂÙ ÀÂÙ ÀÂÙ ÀÂÄÙ ÀÂÄÙ ºARITHMETICº ³
 ÀÄÄÄÄÄÁÄÄÄÄÄÁÄÄÄÄÄÁÄÄÄÄÄÁÄÄÄÄÄÄÁÄÄÄÄÄ>ºEXPRESSIONÇÄÄÁÄÄÄÄ>
 ÈÍÍÍÍÍÍÍÍÍÍ¼
ARITHMETIC
EXPRESSION: ÉÍÍÍÍÍÍÍÍÍÍ» TERM: ÉÍÍÍÍÍÍÍÍÍÍ»
 ÄÄÄÄÄÄÄÄÂÄ>º TERM ÇÄÄÂÄÄÄÄÄÄÄ> ÄÄÄÄÄÄÄÄÂÄ>ºSHIFT EXPRÇÄÄÂÄÄÄÄ>
 ³ ÈÍÍÍÍÍÍÍÍÍÍ¼ ³ ³ ÈÍÍÍÍÍÍÍÍÍÍ¼ ³
 ³ ÚÄ¿ ³ ³ ÚÄ¿ ³
 Ã<ÄÄÄÄÄ´+³<ÄÄÄÄÄÄ´ Ã<ÄÄÄÄÄ´*³<ÄÄÄÄÄÄ´
 ³ ÀÄÙ ³ ³ ÀÄÙ ³
 ³ ÚÄ¿ ³ ³ ÚÄ¿ ³
 À<ÄÄÄÄÄ´-³<ÄÄÄÄÄÄÙ À<ÄÄÄÄÄ´/³<ÄÄÄÄÄÄÙ
 ÀÄÙ ÀÄÙ

SHIFT EXPR: ÉÍÍÍÍÍÍÍÍÍÍ»
 ÄÄÄÄÄÄÄÄÄÄ>º FACTOR ÇÄÄÄÄÄÄÄÂÄÄÄÄÄÂÄÄÄÄÄÄÂÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ>¿
 ÈÍÍÍÍÍÍÍÍÍÍ¼ ³ ³ ³ ³
 ³ ³ ³ ³
 ÚÁÄ¿ ÚÁÄ¿ ÚÄÁÄ¿ ³
 ³<<³ ³>>³ ³->>³ ÉÍÍÍÍÍÍÍÍÍÍ» ³
 ÀÂÄÙ ÀÂÄÙ ÀÄÂÄÙ º INTEGER º ³
 ÀÄÄÄÄÄÁÄÄÄÄÄÄÁÄÄÄÄ>º FACTOR ÇÄÄÁÄÄÄÄÄÄÄÄÄÄÄ>
 ÈÍÍÍÍÍÍÍÍÍÍ¼

FACTOR: ÚÄ¿ ÉÍÍÍÍÍÍ»
 ÄÂÄÄÄÄÄÂÄÂÄ>³-ÃÄÄÄ>ºFACTORÇÄÄ>¿
 ³ ÚÄ¿ ³ ³ ÀÄÙ ÈÍÍÍÍÍÍ¼ ³
 ÀÄ´+³<Ù ³ ÉÍÍÍÍÍÍÍÍ» ³
 ÀÄÙ ÃÄ>ºCONSTANTÇÄÄÄ>´
 ³ ÈÍÍÍÍÍÍÍÍ¼ ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ>¿ ³
 ³ ÉÍÍÍÍÍÍÍÍÍÍ» ³ ÉÍÍÍÍÍÍÍÍÍÍ» ³ ³
 ³ ºINTEGER, º ³ ÚÄ¿ ºINTEGER º ÚÄ¿ ³ ³
 ÃÄ>ºCHAR OR ÇÄÁÄ>³(ÃÄÂÄ>ºEXPRESSIONÇÄÂÄ>³)ÃÄÁÄÄÄÄÄÄÄÄÄÄÄ>´
 ³ ºREAL NAME º ÀÄÙ ³ ÈÍÍÍÍÍÍÍÍÍÍ¼ ³ ÀÄÙ ³
 ³ ÈÍÍÍÍÍÍÍÍÍÍ¼ ³ ÚÄ¿ ³ ³
 ³ À<ÄÄÄÄÄ´,³<ÄÄÄÄÄÙ ³
 ³ ÀÄÙ ³
 ³ ÚÄ¿ ÉÍÍÍÍÍÍÍÍÍÍ» ÚÄ¿ ³
 ÃÄ>³(ÃÄÄÄ>ºEXPRESSIONÇÄÄÄ>³)ÃÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ>´
 ³ ÀÄÙ ÈÍÍÍÍÍÍÍÍÍÍ¼ ÀÄÙ ³
 ³ ³
 ³ ÉÍÍÍÍÍÍÍÍÍÍÍÍÍ» ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄ>ÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿ ³
 ³ ºFUNCTION, º ³ ÚÄ¿ ÉÍÍÍÍÍÍÍÍÍÍ» ÚÄ¿ ³ ³
 ÃÄ>ºINTRINSIC OR ÇÄÁÄ>³(ÃÄÂÄ>ºEXPRESSIONÇÄÂÄ>³)ÃÄÁÄÄÄÄÄÄÄÄ>´
 ³ ºEXTERNAL NAMEº ÀÄÙ ³ ÈÍÍÍÍÍÍÍÍÍÍ¼ ³ ÀÄÙ ³
 ³ ÈÍÍÍÍÍÍÍÍÍÍÍÍÍ¼ ³ ÚÄ¿ ³ ³
 ³ À<ÄÄÄÄÄ´,³<ÄÄÄÄÄÙ ³
 ³ ÉÍÍÍÍÍÍÍÍÍÍ» ÀÄÙ ³
 ÃÄ>º STRING ÇÄÄÄ>´
 ³ ÈÍÍÍÍÍÍÍÍÍÍ¼ ³
 ³ ÉÍÍÍÍÍÍÍÍÍÍ» ³
 ³ º CONSTANT º ³
 ÃÄ>º ARRAY ÇÄÄÄ>´
 ³ ÈÍÍÍÍÍÍÍÍÍÍ¼ ³
 ³ ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ>´
 ³ ÚÄÄÄÄÄÄÄ¿ ÉÍÍÍÍÍÍÍÍ» ³ ÉÍÍÍÍÍÍÍÍÍÍ» ³
 ÃÄ>³addressÃÄÂÄÄ>ºVARIABLEº ³ ÚÄ¿ ºINTEGER º ÚÄ¿ ³
 ³ ÀÄÄÄÄÄÄÄÙ ³ ºNAME ÇÄÁÄ>³(ÃÄÂÄ>ºEXPRESSIONÇÄÂÄ>³)ÃÄ>ÁÄÄÄÄÄÄ>
 ³ ÚÄ¿ ³ ÈÍÍÍÍÍÍÍÍ¼ ÀÄÙ ³ ÈÍÍÍÍÍÍÍÍÍÍ¼ ³ ÀÄÙ
 ÀÄ>ÄÄÄ´@ÃÄÄÄÄÙ ³ ÚÄ¿ ³
 ÀÄÙ À<ÄÄÄÄÄ´,³<ÄÄÄÄÄÙ
 ÀÄÙ
CONSTANT ARRAY:
 ÉÍÍÍÍÍÍÍÍÍÍ»
 ÚÄ¿ ºCONSTANT º ÚÄ¿
 ÄÄÄ>³[ÃÄÄÂÄ>ºEXPRESSIONÇÄÄÂÄÄ>³]ÃÄÄÄÄÄÄÄÄÄ>
 ÀÄÙ ³ ÈÍÍÍÍÍÍÍÍÍÍ¼ ³ ÀÄÙ
 ³ ÉÍÍÍÍÍÍÍÍÍÍ» ³
 ³ º CONSTANT º ³
 ÃÄ>º ARRAY ÇÄÄ´
 ³ ÈÍÍÍÍÍÍÍÍÍÍ¼ ³
 ³ ÉÍÍÍÍÍÍÍÍÍÍ» ³
 ÃÄ>º STRING ÇÄÄ´
 ³ ÈÍÍÍÍÍÍÍÍÍÍ¼ ³
 ³ ÚÄ¿ ³
 À<ÄÄÄÄÄ´,³<ÄÄÄÄÄÄÙ
 ÀÄÙ
STRING:
 ÚÄ¿ ÚÄÄÄÄÄÄÄÄÄ¿ ÚÄ¿
 ÄÄÄÄÄÄÄ>³"ÃÄÂÄ>³characterÃÄÂÄ>³"ÃÄÄÄÄÄÄÄÄÄ>
 ÀÄÙ ³ ÀÄÄÄÄÄÄÄÄÄÙ ³ ÀÄÙ
 À<ÄÄÄÄÄÄÄÄÄÄÄÄÄÙ

CONSTANT: ÚÄ¿
 ÚÄ>³-ÃÄ¿ ÉÍÍÍÍÍÍÍÍ»
 ³ ÀÄÙ ³ ºUNSIGNEDº
 ÄÄÄÄÄÅÄÄÄÄÄÄÅÄÄ>ÄÂÄ>ºINTEGER ÇÄÄÄÄÄÄÄÄÄ>¿
 ³ ÚÄ¿ ³ ³ ÈÍÍÍÍÍÍÍÍ¼ ³
 ÀÄ>³+ÃÄÙ ³ ÉÍÍÍÍÍÍÍÍ» ³
 ÀÄÙ ³ ºUNSIGNEDº ³
 ÃÄ>ºREAL ÇÄÄÄÄÄÄÄÄÄ>´
 ³ ÈÍÍÍÍÍÍÍÍ¼ ³
 ³ ÉÍÍÍÍÍÍÍÍ» ³
 ³ ºCONSTANTº ³
 ÃÄ>ºNAME ÇÄÄÄÄÄÄÄÄÄ>´
 ³ ÈÍÍÍÍÍÍÍÍ¼ ³
 ³ ÚÄÄÄÄÄ¿ ³
 ÃÄ>³true ÃÄÄÄÄÄÄÄÄÄÄÄÄ>´
 ³ ÀÄÄÄÄÄÙ ³
 ³ ÚÄÄÄÄÄ¿ ³
 ÃÄ>³falseÃÄÄÄÄÄÄÄÄÄÄÄÄ>´
 ³ ÀÄÄÄÄÄÙ ³
 ³ ÚÄ¿ ÚÄÄÄÄÄÄÄÄÄ¿ ³
 ÀÄ>³^ÃÄÄ>³characterÃÄÄ>ÁÄÄÄÄÄÄ>
 ÀÄÙ ÀÄÄÄÄÄÄÄÄÄÙ

NAME: ÚÄÄÄÄÄÄÄÄÄ¿
 ³uppercase³
 ÄÄÄÄÄÂÄ>³letter ÃÄÂÄÂÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÂÄÄÄÄÄÄÄÄ>
 ³ ÀÄÄÄÄÄÄÄÄÄÙ ³ ³ ÚÄÄÄÄÄÄ¿ ³
 ³ ÚÄÄÄÄÄÄÄÄÄ¿ ³ Ã<Ä´letter³<ÄÄÄÄ´
 ÀÄ>³underlineÃÄÙ ³ ÀÄÄÄÄÄÄÙ ³
 ÀÄÄÄÄÄÄÄÄÄÙ ³ ÚÄÄÄÄÄÄ¿ ³
 Ã<Ä´digit ³<ÄÄÄÄ´
 ³ ÀÄÄÄÄÄÄÙ ³
 ³ ÚÄÄÄÄÄÄÄÄÄ¿ ³
 À<Ä´underline³<ÄÙ
 ÀÄÄÄÄÄÄÄÄÄÙ
UNSIGNED INTEGER:
 ÚÄÄÄÄÄ¿
 ÄÄÄÄÄÂÄ>ÄÂÄ>³digitÃÄÂÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ>ÂÄÄÄÄÄÄÄÄ>
 ³ ³ ÀÄÄÄÄÄÙ ³ ³
 ³ ÀÄÄÄÄÄ<ÄÄÄÄÙ ³
 ³ ÚÄ¿ ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿ ³
 ÃÄ>³$ÃÄÂÄ>³0..9, A..F, a..fÃÄÂÄÄ>´
 ³ ÀÄÙ ³ ÀÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ ³ ³
 ³ ÀÄÄÄÄÄÄÄÄÄÄÄ<ÄÄÄÄÄÄÄÄÄÙ ³
 ³ ÚÄ¿ ÚÄÄÄÄÄÄÄÄÄÄ¿ ³
 ÀÄ>³%ÃÄÂÄ>³ 0..1 ÃÄÂÄÄÄÄÄÄÄÄ>Ù
 ÀÄÙ ³ ÀÄÄÄÄÄÄÄÄÄÄÙ ³
 À<ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ

UNSIGNED REAL: ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ>¿ ÚÄ¿ ÚÄ¿
 ³ ÚÄÄÄÄÄÄÄÄÄÄÄÄÄ>¿ ³Ú>³EÃ¿ ÚÄ>³-ÃÄ¿
 ÚÄÄÄÄÄ¿ ³ ÚÄ¿ ³ ÚÄÄÄÄÄ¿ ³ ³³ ÀÄÙ³ ³ ÀÄÙ ³ ÚÄÄÄÄÄ¿
ÄÄÄÂÄÂÄ>³digitÃÄÂÄÁ>ÂÄ>³.ÃÄÁÄÂÄ>³digitÃÄÂÄÁÂ>Á´ ÃÄÅÄÄÄÄÄ>ÅÄÂÄ>³digitÃÄÂ>ÂÄÄ>
 ³ ³ ÀÄÄÄÄÄÙ ³ ³ ÀÄÙ ³ ÀÄÄÄÄÄÙ ³ ³ ³ ÚÄ¿³ ³ ÚÄ¿ ³ ³ ÀÄÄÄÄÄÙ ³ ³
 ³ À<ÄÄÄÄÄÄÄÄÄÙ ³ À<ÄÄÄÄÄÄÄÄÄÙ ³ À>³eÃÙ ÀÄ>³+ÃÄÙ À<ÄÄÄÄÄÄÄÄÄÙ ³
 ÀÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ>Ù ³ ÀÄÙ ÀÄÙ ³
 ÀÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ>Ù

 I N D E X

Abort 81 brightness 99
Abs 77, 90 buffer 67
absolute value 77 buffered keyboard 69
ACos 94 buffer, flush output 80
Addition 14 buffer, frame 100, 103
addr 66 buffer, large 70, 83
address operator 64 buffer, small 70, 83
align decimal points 91 buffer, 256-byte circular 74
Allocated memory 97 button, GUI 103
alpha 85, 95 bytes, array of 104
Alt key 102
and 18 call by reference 66
animation 98, 103 call by value 66
arc-cosine function 94 calls, subroutine 34
arc-sine function 93 card, SD 71
arc-tangent 92 caret 8, 55
arguments 34, 40 Carriage Return 3, 69, 79
array 51, 78 case 7
array bounds 112 case statement 29
array of bytes 104 Celsius 36
arrays, real 89 CGA 87
array, constant 60 characters 8
array, multidimensional 56 characters are clipped 95
arrow keys 74, 101 characters, control 56, 74
ASCII 8 characters, extended 55
ASCII, extended 96 characters, struck-out 94
ASin 93 ChIn 67, 79
asm 37 ChkKey 84
Assembly code 37 ChOut 12, 67, 79
assignment 27 Clear 85
ATan2 92 clipped, characters 95
Attrib 73, 94 Close 67, 80
available heap space 81 code 45
 codesr.xpl 45
backslash 34 code, Assembly 37
Backspace 69 code, run-time 45
BackUp 100 color 73
begin 5, 27 color bits 85
binary 7 colors 94
binary form 68 comma 33
bits 18 command word 9
bits, color 85 command, string 55
bit, sign 78 command-line switch 20
block 5, 6, 27 comments 34
block of memory 97 common logarithm function 93
boolean 18 common mistake 59
bounds, array 112 communications, serial 73
braces 37 comparisons 16
brackets 5, 28 compile 4

compile errors 105 equal, not 16
compile, conditional 25 errors, compile 105
complex data structures 57 errors, run-time 81
conditional compile 25 error, I/O 81
constant 5, 7, 9 error, rounding 25
constant array 60 error, square root 81
constant expressions 24 Esc key 101
control characters 56, 74 escape sequence 74
control-C trapping 97, 98 evaluation, short-circuit 20
control-Z 71, 74 exclusive-or 18, 20
coordinates, polar 66, 92 exclusive-oring 86, 88, 95
CopyMem 104 exit statement 34, 44
Cos 93 Exp 92
cosine function 93 exponent 8
CrLf 3, 12, 79 exponential function 92
Ctrl key 102 expressions 5, 14
Ctrl+C 69, 74, 98 expressions, constant 24
current time 99 expression, if 20, 24
Cursor intrinsic 73, 82 expression, shift 23
cursor, flashing 69, 73, 88, 100 Extend 78
 extended ASCII 96
dashed lines 86 extended characters 55
date and time 103
day 103 factor 5, 7
deallocate 97 Fahrenheit 36
decimal point 8 false 16, 17
declaration 9 fault, segmentation 21, 97
define 10 FClose 71, 84
degrees 92 ffunction 49
degrees, radians to 44 file descriptor 70
delay 85 file, end of 71
DelayUS 102 file, input 70
descriptor 70, 83, 84 file, output 70
Device numbers 68 file, sound 104
device, null 74 FillMem 104
dice.xpl 52 Fix 15, 24, 90
dimension 53, 54 Fix argument out of range 81
display 104 fix overflow 90
displayed frame buffer 100 flag, Rerun 83
Division 14 flashing cursor 69, 73, 88, 100
division by 0 81 Float 15, 24, 90
dollar sign 7 Flush output buffer 80
downto 33 font 73
dynamic memory 54 font table 102
 FOpen 70, 84
E 8 form feed 85
effect, side 20 format 12, 36
EGA 87 format of real numbers 90
else 24, 28 form, binary 68
end 5, 27 Forward function 49
end of file 71 forward procedure 49
engineering notation 90 for loop 33
Enter 69 fprocedure 49
enumerating 10 frame buffer 103
EOF 74 Free 81
equal 16 FSet 70, 83, 84

function 43 keyboard 2, 84
functions, trig 92 keyboard, buffered 69
function, arc-cosine 94 keys, arrow 74, 101
function, arc-sine 93 keys, non-ASCII 101
function, common logarithm 93 keys, shortcut 103
function, cosine 93 key, Alt 102
function, exponential 92 key, Ctrl 102
function, modulo 93 key, Ctrl+C 98
function, sine 92 key, Esc 101
function, tangent 93 key, non-ASCII 69
 key, Pause 69, 101
game, guessing 2 key, Shift 102
GetDateTime 103
GetErr 71, 82 large buffer 70, 83
GetFB 103 leak, memory 97
GetFont 102 less than 16
GetHp 82 letters 8
GetKey 101 Line 86
GetMouse 101 LineFeed 3, 74, 79
GetMouseMove 101 lines, dashed 86
gets real number 89 line, new 74
GetShiftKeys 102 Linux system routines 37
GetTime 99 Linux, return code to 34
global 40 Ln 91
greater than 16 local 40
Guess 2 Log 93
guessing game 2 logarithm, natural 91
GUI button 103 loop statement 32
 loop, for 33
heap 54 loop, infinite 33
hex 7, 38 lowcase.xpl 72
HexIn 83 lowercase 9
HexOut 83
highlight 96 main procedure 4
Hilight 96 MakeNumber 2
hour 103 MAlloc 97
 masking 18
if expression 20, 24 matrix 56
if statement 5, 28 memory leak 97
include 49 memory, allocated 97
infinite loop 33 memory, block of 97
Input and output 67 memory, dynamic 54
input file 70 memory, out of 81
InputGuess 2 memory, video 104
InsertKey 103 menu item 103
integer 3, 7, 9, 43 minute 103
intersection 21 mistake, common 59
IntIn 2, 67, 79 mixed mode 15
IntOut 12, 67, 80 Mod 93
intrinsics 12, 45, 76 mode, video 87, 95
intrinsic, Cursor 73 modulo function 93
item, menu 103 monitor screen 2, 12, 68
I/O 67 month 103
I/O error 81 mouse 100, 101
I/O, redirect 72 mouse pointer 98
 Move 73, 86

MoveMouse 98 Point 85
multidimensional array 56 pointer 53
Multiplication 14 pointer, mouse 98
 points, align decimal 91
Names 9 point, decimal 8
name, path 84 point, places after decimal 90
NAN 91 polar coordinates 66, 92
natrpi.s 45 position, pen 73, 86, 103
natural logarithm 91 powers of two 23
nested procedures 47 precision 8
nesting 42 printer 70, 73
new line 74 procedure 2, 6, 39
non-ASCII keys 69, 101 procedures, nested 47
not 18 procedure, main 4
not a number 91
not equal 16 quit statement 32
notation, engineering 90
notation, scientific 90 radians 92
null device 74 radians to degrees 44
null statement 35 Ran 2, 77
numbers, device 68 random number 77, 98
numbers, format of real 90 Randomize 77
numbers, real 25 range, Fix argument out of 81
number, inputs real 89 RanSeed 98
number, not a 91 RawText 96
number, random 77, 98 ReadPix 86
NumLock 102 real 7, 8, 9, 43
 real arrays 89
of 29 real numbers 25
OpenI 44, 67, 80, 84 record structure 62
OpenMouse 100 Recursion 48
OpenO 67, 74, 80 red and blue colors reversed 88
operator 5 redirect I/O 69, 72
operator, address 64 reference, call by 66
operator, unary 15 Release 97
or 18 Rem 14, 77
or, exclusive 18 remainder 14, 20, 77
other 29 remove 37
out of memory 81 rename 37
output file 70 repeat 11
output, Input and 67 repeat statement 31
overflow 15 reread 100
overflow, fix 90 Rerun 79, 82, 83
 reserve 53, 58, 78
page 1 104 Restart 79
Paint 98 return code to Linux 34
palette 85, 102 returning multiple values 65
parentheses 14, 40 return statement 42, 43
path name 84 Return, Carriage 3, 69, 79
Pause key 69, 101 reversed, red and blue colors 88
pen position 73, 86, 103 right, shift arithmetic 23
percent 7 RlAbs 90
pixel 85 RlIn 67, 89
pixels, square 88 RlOut 26, 36, 67, 89
places after decimal point 90 RlRes 59, 89
PlaySoundFile 104 root, square 91

rounding error 25 statement, return 42, 43
rounds 90 statement, while 31
routines, Linux system 37 static variables 61
run-time code 45 stops, tab 68
run-time errors 81, 82 string 54, 80
 string 0 96
scientific notation 90 string command 55
scope 46 struck-out characters 94
screen, monitor 2, 12, 68 structures, complex data 57
scroll 95 structure, record 62
SD card 71 subroutine calls 34
second 103 subroutines 39
seed 98 subscript 51
segmentation fault 21, 97 Subtraction 14
semicolon 5, 29, 35, 111 Swap 78
sequence, escape 74 switch terminals 69
serial communications 73 switch, command-line 20
SetFB 100 sync, vertical 103
SetFont 102 syntax 4
SetHp 82
SetPalette 102 Tab 11
SetRun 83 tab stops 68
sets 21 table, font 102
SetVid 73, 87 Tan 93
SetWind 73, 95 tangent function 93
shift arithmetic right 23 terminals, switch 69
shift expression 23 TestC 98
Shift key 102 TestGuess 3
shortcut keys 103 Text 2, 12, 80
short-circuit evaluation 20 then 24
ShowCursor 73, 101 time, current 99
ShowMouse 98 time, date and 103
ShowPage 104 to 33
side effect 20 tone 85
sign bit 78 transparency 85, 95
signed 17 Trap 71, 81
Sin 92 TrapC 97
sine function 92 trapping, control-C 97, 98
small buffer 70, 83 trig functions 92
Sound 85 true 16, 17, 18
sound file 104 two, powers of 23
spaces 12
space, available heap 81 unary 18
speaker 85 unary operator 15
Sqrt 91 underline 7
square pixels 88 ungetc 100
square root 91 union 21
square root error 81 until 11
statements 5, 27 uppercase 8
statement, case 29
statement, exit 44 values, returning multiple 65
statement, if 5, 28 value, absolute 77
statement, loop 32 value, call by 66
statement, null 35 variable 5, 7, 8
statement, quit 32 variables, static 61
statement, repeat 31 vertical sync 103

VESA 87
VGA 87
video display mode 87
video memory 104
Video modes 95

WaitForVSync 103
wav file 104
while statement 31
window 73, 95
word, command 9

x 4
xor 18
xx 4, 20

year 103

0x 38
0, division by 81
0, string 96
256-byte circular buffer 74
! 18
" 54
16
$ 7
% 7
& 18
* 14
+ 14, 15
- 14, 15
-b 20
->> 23
/ 14, 49
:= 27
; 5
< 16, 69
<< 23
<= 16
= 16
> 16, 69
>= 16
>> 23
@ 37, 66
[] 5, 28
\ 34
\\ 35
^ 8, 55
_ 7
{ 37
| 18
} 37
~ 18

